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Quantum resonances and regularity islands in quantum maps
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We study analytically as well as numerically the dynamics of a quantum map near a quantum resonance of
an orderq. The map is embedded into a continuous unitary transformation generated by a time-independent
quasi-Hamiltonian. Such a Hamiltonian generates at the very point of the resonance a local gauge transforma-
tion described by the unitary unimodular group §)( The resonant energy growth is attributed to the zero
Liouville eigenmodes of the generator in the adjoint representation of the group while the nonzero modes yield
saturating with time contribution. In a vicinity of a given resonance, the quasi-Hamiltonian is then found in the
form of power expansion with respect to the detuning from the resonance. The problem is related in this way
to the motion along a circle in ay¢— 1)-component inhomogeneous “magnetic” field of a quantum particle
with g intrinsic degrees of freedom described by the §Ugroup. This motion is in parallel with the classical
phase oscillations near a nonlinear resonance. The most important role is played by the resonances with the
orders much smaller than the typical localization lengithl. Such resonances master for exponentially long
though finite times the motion in some domains around them. Explicit analytical solution is possible for a few
lowest and strongest resonances.

PACS numbegps): 05.45.Mt

[. INTRODUCTION which is directly linked to the periodicity of the driving
force. In such an approadl8], the regular regime near a
Classical canonical two-dimensional maps originatednonlinear resonance is juxtaposed with the continuous evo-
from the Poincare sections in the phase space have played iion described by a conservative effective quasi-
exceptional role in the establishing our understanding of thétamiltonian function. Corresponding canonical Hamilton
origin and properties of the dynamical chd@s?]. Formally, ~ €guations generate continuous trajectories on which all phase
they correspond to nonconservative Hamiltonian systemBoints of the original map lie. The quasi-Hamiltonian is
with one degree of freedom driven by instantaneous periodifound by perturbation expansion with respect to a small pa-
kicks. The phase plane of such a map is, generally, Ver\pameterwmch can, in particular, be the closeness to the reso-
complex and consists of intimately entangled domains filled@nce. _ _
by regular and chaotic trajectories. The chaotic domains re- After the quantum extension of the canonical maps had
main isolated from each other if the driven force is weak, buf?€en suggested in Re#], the quantum maps were widely
they join and global chaos appears when the strength of thésed as informative models of quantum chaos. Amongst
force exceeds some critical value . After that, regular motiorfem Chirikov's standard map, i.e., the periodically driven
survives only inside isolated islands of the phase plang?l@nar rotor, proved to be the most economic, fruitful, and
where phase oscillations near the points of mainly low ordePOPular. The unitary Floguet transformatiod which
nonlinear resonances take place, whose areas diminish wigiyolves the QKR wave functiof(6) over each kick period

the strength growing. is given by

Existence of the chaotic domains signifies absence of a .
global a_nalytical integral of the motion. At ?he same tjme, U:UrUkEexp( _ I—Tfnz)exp(—ik cosé) 1)
there exist in the regions of the regular motion approximate 2

local integrals which can be chosen in many different ways.

It should seem, however, that the most convenient and physnd consists of successive kick transformatidpwith the

cally sounding choice is that of the quasienergy integraktrengthk and a free rotatiotJ, during the timeT. Herem
=—id/d6 and we puthi=1. The standard map provides a
local description for a large class of dynamical systems. In

*Electronic address: vsokolov@inp.nsk.su particular, there exists a tight and remarkable analtgly
"Electronic address: zhirov@inp.nsk.su between discovered in Ref4] dynamical suppression of
*Electronic address: dalonso@ull.es chaos in QKR and Anderson localization in quasi-one-
$Electronic address: casati@fis.unico.it dimensional(1D) disordered wires. The diffusive growth of
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the QKR energy turns out to be restricted to a certain maxinow consider continuous unitary transformation U(t)
mal value because of dynamical localization in the angular=exp(—iHt). According to such a definition, the wave func-
momentum space. tion ¢(0;t)=U(t) (6;0) at the integer moments=n coin-

At the same time, there exist some important features ofides with the quantum state of the mélp. On the other
the QKR dynamics, namely, so-called quantum resonanceband, the functiony(6;t) satisfies standard Scltiager
which have no counterparts in the disordered systésae  €quation with the time-independent Hamiltoniah Obvi-

[6] and discussion in Ref7,8]). At a fixed value of the kick ously, the very possibility of the formal construction de-
parameteik, special resonant regimes of motion apper  Scribed is based on the periodicity of the map. That is why
for everywhere dense set of the rational valyesT/4m we refer below to thls operator as theasi-Hamiltonian
=pl/q, where the integens andq are mutually prime. Under Let |€) be the eigenvector of thiee Floquet operatay,
these conditions the rotator regularly accumulates energyNich belongs to an eigenvalue . Then the quasi-
which grows quadratically in the time asymptotids?,16|. amiltonian can be expressed as

Both the restricted diffusion and the quantum resonances

were experimentally observed in the atom optics imitation of

the QKR reported in Ref.9]. Quite recently, the regime of H=E€ |€)e(el, 2
quantum resonances reappeared in a new aspect in connec-

tion with the electron scattering with excitation of the i

Wannier-Stark resonancés0,11]. where the sum runs over the quasienergy specfrjnof the

The interesting and important problem of the impact offotator. As usual, each quasienergy is defined up to a term
the quantum resonances on the QKR dynamics and the intefultiple 2 which results in corresponding ambiguity of the
play between resonant and diffusive regimes is still far fromduasi-Hamiltonian(2). However, each time one can fix the
being satisfactorily understood. Investigation of this problemPperator’ in the way most convenient for calculation. The
is the main goal of the present paper. We develop a gener@mbiguity does not influence the evolution operaict) at
approach to the problem of the motion in a vicinity of a integer moments. As a rule, to get rid of the ambiguity we
quantum resonance with an arbitrasder g Generally, the suggest continuity of the quasi-Hamiltonian with respect to
influence of a quantum resonance depends on the relatid?arameters under consideration. In the coordinate represen-
between the ordeq and the localization lengthin the an-  tation, the quasi-Hamiltonian is an operator function of the
gular momentum space. We show that the most importarpair of canonically conjugate observabieandm. Since the

role is played by the resonances witke|: for finite regions  operatorsm? and cog do not belong to any finite algebra,
around them the quantum motion is explicitly shown to bethe operatorH cannot generally be found in a closed form.
regular and dominates the motion for all valuesinside  Rather, it is expressed as an infinite sum of successive com-
these regions—the resonaneedths More precisely, the mutators. More than that, one anticipates extremely nonuni-
motion is well described, during large though finite times, byform dependence of the operattron the parameters and

a time-independent effective quasi-Hamiltonian with one ro

tational degree of freedom and with a discrete Spectrum. However, the pr0b|em S|mp||f|es enormous|y if the con-
Such a motion is in parallel with the classical phase oscillagition of a quantum resonance is fulfilled. As has been
tions near a nonlinear resonance. On the contrary, when théhown by Izrailev and Shepelyanski2], at the point of a
resonance order is large enougl:; | the resonant quadratic quantum resonances with the ordgthe Floquet operator
growth appears only in the remote time asymptotic and focan, generally, be presented asj&q matrix. This matrix
lesser times the motion reveals universal features charactefirns out to beésee belowa local gauge transformation from
istic of the localized quantum chaos. the unitary SUQ) group generated by a Hermitian matrix

In Sec. Il we explain the concept of the effective quaSi-,}"_'[(res)( 6) which depends only on the angle and does not con-

Ham|ltqn|an on which our approgch is based. The POWEEain the angular momentum. Owing to this fact, the problem
expansion of the quasi-Hamiltonian near a quantum reso- . 7 (res) .
nance is constructed in Sec. Ill. In this section we also conpf calpulatlon of the maj[nXH . bepomes as S|mpl(33r
sider analytically and numerically two strongdsbundary co_mpllcate()l_as that of d|agonal|zat|or_1 of q—d|men5|_onal .
quantum resonances with=1,2 and their classical limits. unitary matrix. The latter can be carried out analytically if
Two more strong resonances are investigated in the next Sett}:1e matrix order does not exceed 4.

IV. Contrary to the boundary resonances, they disappear in Dependence of the quaergmlItoman on the angular mo-
the formal limit# —0. General consideration of a resonance €NtUM recovers out O.f the points of quantum resonances. In
of an arbitrary order is presented in Sec. V. At last, the>O0Me domain near a given quantum resonance with an order
problem of convergence of our expansion is discussed i th's_ dependence can _be found in the form of a power ex-
Sec. VI. pansion over the detuning from the resonance. This expan-
sion turns out to appear in the form of series, in particular, in

powers of the angular momentUsee Eq(105 below] with

Il. QUASI-HAMILTONIAN the resonance matrik(("®s( #) being the zero-order term in
the series. Actually, such an expansion is quite a formal one.
Evolution of the QKR wave function fon kicks is given = The question of convergence by no means is trivial. At best,
by n successive repetitiond (n)=U" of the Floquet trans- the series is of only asymptotic nature. Nevertheless, we
formation (1). Being unitary, the latter can be expressed inshall see below that a few its first terms give surprisingly
terms of a Hermitian operatd® as U=exp(—iH). Let us good description of the evolution during a very long time.
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IIl. BOUNDARY RESONANCES

1 i 1
O ny=— —
A. Regularity domains and quasi-Hamiltonians fo drQ(=7) Zjo dr
In the simplest casg=1, the rotation operatod, is "
equivalent to the identity and the QKR evolution during a XJ d7[QO(—7,),Q0(—7,)]_
time t is described by the unitary phase transformation 0
e '’ v(#)=kcoséh. This transformation parametrically de- (10

pends on the angl® and therefore has continuous eigen-

value spectrume(6)=v(#6). By the moment, an isotropic and so on, which allow us to find the quasi-Hamilton{@h
initial state, which we suggest throughout the paper, evolvesp to desired accuracy. Equati¢®) implies that the evolu-
into the wave function tion described by the mal) is smoothed in such a way that
the overall effect of the lowest order correctiorfQ(®
within one period is identical to the kinetic energy operator

K=3%12;km=J. Being a small factor in front of the angle
derivative, the detuning plays here the role of the dimen-
gsionless Planck’s constant whileis the angular momentum
operator in the units chosen. With only the two first correc-
tions (9),(10) being retained the quasi-Hamiltonian acquires
the form

exp —ikt coso) 3

1
lﬂ(ﬁ,t)—\/T—Tr

with ~kt harmonics. The natural probe of the number o

harmonics is the angular momentum operator —id/dé
whose time evolution obeys the linear law

m(t)=e'’'me "'=m+e[me " _=m-uv't, 1 1
4) Hy=5IF5(0)3+5{J,F1(0)}+ +Fo(6) (12)

v'=dv/d6.
of the Hamiltonian of a generalized pendulum. The periodic
This yields the quadratic growth of the kinetic eneifgft)  functionsF;(¢) depend on the angle via the kick potential

of the rotor v(6). In the lowest approximation
L L, K F(0)=1: Fi(0)=— v’ Fo(0)=Kv+K—2(v')2
E(t)=5([m(t)—m]%)=5((v" )=t (5 ' 2V 12 ’
(12
H 2
with the resonant growth rate 1:I_< /4. Here and below the when the next correction adds
angular brackets denote averaging over the afigle
Let us now consider a vicinitk=T—47zp of a main P K2
resonance=1. The time-independent quasi-Hamiltoni&n OF,(0)=—=v; OF(0)=-5v'v;
) L : 6 12
in the vicinity is introduced by representing the Floquet op-
erator in the form 3 (13

K3 N2 K
- : OFy(0)= 60(0 )v 28V
Upyl(K)ZEX[{ - EKm2> exp( —ivt)zex;{ - —Hl(K))
K In further corrections higher powers of the operaloalso
6) arise.

Uprising of the angular momentum operafon Eq. (11)
drastically changes the eigenvalue problem. The afdgsea
quantum-mechanical coordinate operator in this problem,
and the spectrum of the quasi-Hamiltoniaf as well as of
the Floguet operator becomes discrete because of the peri-
odic boundary condition. The main effect of the term qua-
dratic inJ consists in cutting off the unrestricted kinetic en-

i R 1 . . .
exp{ _ _sz) —T* exp[ _in d7Q(x;— 7-)], ergy growth. This is well seen in Fig. 1 Already the lowest
0

with
Hi(k)=kv+ k?Q(k). (7)

It follows that the operato®(«) must satisfy the condition

2 correction (dotted ling describes reasonably good the turn
(8)  off from the quadratic resonant growth, as well as the mean
Q(k:—r)=e "*7Q(k)el’", height of the saturation plateau. The next aselid line)
substantially improves the description and reproduces well
also the details of quantum fluctuations in the plateau region.
Influence of the further corrections, which contain, in par-
ticular, higher powers of the angular momentdpremains
weak in the finite domaim\ «, the width of the resonance,
where the angular momentudnin the plateau region is still
L 1 sufficiently small.
f drQO(—r)= =m?, (9) Before analyzing the conditions of validity of E(L1) in
0 2 more detail, we consider the resonarge 2 because of a

where the symbol'™* stands for the anti-chronological order-
ing. Suggesting the operat@(«) to permit expanding in
power seriesQ(x)=Q®+xQ®+ ... over the detuning
K, one comes to successive relations
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el el0, £2005) | ®T) where the unit vecton=(0,sinv, cosv). Up to the trivial
04 | = =10, k=l Y]]

phase factor, this is a spin-flip operator which belongs to the
unitary unimodular group S(2). Therefore, corresponding
evolution in the continuous timefully reduces to the spin
rotation.

In particular, evolution of the angular momentum is given
by the equation

o o
AMI(t)=ex;{ [ En- at)Mex;{ —i En- at) —M=AM(t)- o.
(19

0.0 5 ;
0 40 . 80 120 The vectorAM(t) is easily calculated by making use of the
formula
FIG. 1. The kinetic energyJ?/2) versus the number of kicks
for the main resonanog=1. The dotted and solid lines show pre-
dictions of the proposed theory in the first and second orders, re- ex

spectively. Open circles correspond to the exact QKR map.

i gn- a't) — cogmt/2)—in- osin(mt/2).

Simple transformations lead to the result
tangible similarity of the two cases. Fgr=2, the rotation . _
operatorUr=e*i”’”A“2, wherep is an odd number, has only AM(t) = —v'[ssin(wt/2)cog wt/2) +| sir?(mt/2)],
two eigenvalues 1 and -1. Obviously, any periodic function (20
¢+ (6)[¢-(6)] which contains only evefodd harmonics is  \yhere the unit vectors and| are defined by
an eigenfunction belonging to the eigenvalug-11). An
arbitrary state/(6) can be written down as the linear super- n’=v’(0,cosv,—sinv)=v's, |=[sxXn]=(1,0,0.
position =, + ¢ of these eigenfunctions. Therefore, in (21
the Hilbert space of the periodic functions the operatpis i o
isomorphic to the X2 Pauli matrixos. One can actualize | "€ three unit vectors,|,s form an orthogonal basis in the
this isomorphism by representing the stég) in the form three-dimensional adjoint space of the SU(2) group. The

of a two-component spinor evolution (20) is purely periodic in time, so that the kinetic
energy
4 (0) 2
= 1 1 k
v ( 1/1(0)) ' (149 E(t)= 5([AM(t)]2>= E((v’)2>sin2(7rt/2)=zsin2(7rt/2)

In this representation the differentiation operamrwhich 22
does not change harmonics’ numbers grows into the diagongloes not grow but rather jumps between two values 0 and

matrix k?/4 when the time runs over integer valugd.2].

- The motion in a neighborhood of the considered reso-

M= m O (15) nance is described by the quasi-Hamiltonian matrix
0 m/
a
. - . Ho=k=N- 0+ k*Q(k) (23
while any periodic coordinate operatbf ) looks as 2
F(O)=f, (0)+f_(8)o, (16) [compare with Eq(7)] whereQ is a (2X 2)-matrix operator

_ _ _ _ _ in the spinor space. This operator satisfies the cond{@n
with | bemg the 22 unity matrix. At last, matrix elements \yith m substituted by the matri¥l from Eq. (15). With the
of dynamical operators take the form same accuracy as above, the quasi-Hamiltonian reads as in

e Eqg. (11) again where the angular momentdnand the func-
0, 4= f dexp;( 6)0(6,M)W¥(6), tions(12) are replaced by 2 2 matrices. In the first approxi-
’ - mation they are equal to
17

+a K m
f dovT(o)w(e)=1. Fp()=1; Fi(0)=—5v'|I+5s|o,
o . . (24)

The free rotation is described now by the matrix operator T K? o
U,=0z=e'("2(@s~1) gnd the kick operator reads & Fo(0)=xZn-o+ ().

=e Y71, Simple manipulations with Pauli matrices lead to
the following expression for the resonant Floquet operator: The Hamiltonian(11),(24) describes the motion of a quan-
tum particle with the spin-1/2 along a circle in an inhomo-
1re9) — @i (712 gy —i En_ o (18) geneous magn_etic field. The terms_linear_ in th_e angu!ar mo-
p.2 ' mentumJ mimic a sort of the “spin-orbital” interaction.



PRE 61 QUANTUM RESONANCES AND REGULARITY ISLANLS . .. 5061
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FIG. 2. The kinetic energyJ?/2) versus the number of kicks FIG. 3. The kinetic energyJ'/2) versus the number aéven

for q=2. Dots and crosses show predictions of the theory in theckS for qTZ._The solir(]d_l "nﬁ shows e_vcl)lution predictgd by the
first and second orders. Open circles correspond to the exact QKRHUasi-Hamiltonian28) while the open circles correspond to exact

map. The twa(almos) symmetric branches are due to the oelen gun.]erllcal sflrr;]ulaﬂons. l'he d(:]tted curve Tlt Fhe bottom indicates the
or only odd kicks, respectively. eviation of the theory from the exact solution.

Figure 2 (points shows that quantitative agreement of this om the squared Floguet op_eratUE’Z(K) after which the
approximation with exact numerical simulatiorisircley ~ Nondiagonal o matrices disappear from the quasi-
worsens rather fast. However, the second correction whichiamiltonian.

can be represented in the compact form _ However, it is appreciably simpler to get rid of the non-
trivial SU(2) algebra by separating evolution at only even
« - 542 and only odd kicks. It is then enough to smooth directly the
KsQ(l)zl_G[J, J’(Z(Ul)zn_vl) .U} ] +§{J,U’U}+ squared Floquet transformation. Taking intqzaccount that in
the Hilbert space of periodic functions ™ cosge ™™

3 _ =—C0s6, one comes to the condition
— ("2 —s—1].
+ 35" v(zs I) o (25)

UFZJYZ(K)=exr( - %xrﬁz) ex;{ - IEK(rﬁ—v "2
noticeably improves the correspondericeosses The two i
branches correspond to eveéstarts from zerp and odd _ a7
(starts fromk?/4) pkicks. —ex;{ 2, Halw)
At the first glance, an important difference is seen inithe i o .
dependence of the functiofs in Eq. (12) on the one hand The quasi-Hamiltonian is now found with the help of the
side and in Eq(24) on the other. In the former case, the Baker-Hausdorf expansion
number of harmonics do not exceeds the power of the detun-
ing k. This property holds also in the higher approximations.
Likewise, the factor& and « are balanced in the similar way
so thatk always combines with into the effectiveChirik-
ov's parameteK = xk. Afterwards only positive extra pow- i -
ers of k may remain. Therefore, the influence of the higher —m[K,[/C,[K,/C]_]_]_'F T (28)
terms of the expansion can be expected to be weak when

Ke<1 =
e . _ 172 _ 1 n2_1 H 2
In contrast, the unit vectorsands in Eq. (24) in the most I::(r:re?ilcc erfeJr ar;d ’eCrati) (ri atK'l[)hg mér&]; KIC() s;r:]g)t _aie :29
interesting cas&>1 contain~k harmonics and their de- ) 9y op ; '
L . . - spectively. Since each commutator gives at least one power
rivatives with respect t@ are large. This leads to terms with )
. . . . of the small detunings, uncompensated factoks do not
extra powers ok in the higher corrections, which are not . ! ) )
. ; appear in the series. All four terms displayed in E2B) are
compensated by the small detunirgand enhance higher . L . .
easily calculated explicitly though corresponding expressions

corrections. For example the term in Eg5), which is qua- . X
o . are too lengthy for presenting them here. Figure 3 demon-
dratic with respect to the operatdrcontains uncompensated ) .
strates very good agreement of the evolution described by

factor k. However, such terms turn out to be inefficient and;, . . o . . . .
. ; . this quasi-Hamiltonian with exact numerical simulations.
cancel finally out due to the identity .
Only the even branch is shown.

(re92_ ) _ Theqg=2 resonance of QKR is an example of the specific
[Up2 7= —exp(—imn-o)=1, (26 regimes of motion of periodically driven systems which are
known asantiresonancesThe main feature of them is peri-
so that the casg=2 does not essentially differ from the odic exact recurrendesee Eq(26)] after a certain number of
main resonance as it concerns the role of higher correctiongicks. General consideration of the motion near antireso-
This fact can be proven by disentangling the resonant partances is presented in Rg¢fl3]. The authors showed, in

. (27)

772:%(1c+/€)—4i—,{[lc,l€],— [K-K.[K.K]-1-

24,2
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particular, that such a motion has regular classical limit. In - K201 sl
fact, this is valid not only fog=2 antiresonance but also for = < o 00
the actual resonanag=1 (see next subsectipnMore than x k=10

that, we will demonstrate in Secs. IV and V that domains of
a regular quantum motion exist near all resonances with
<I|. However, contrary to the two boundary resonances, the
widths of other resonances diminish in the classical limit so
that this motion has no direct counterpart in the classical
standard map.

éx
x S
z

x %
by X

B. The classical limit

0.0
In both cases already considered the quantum fluctuations 0 200 400 . 600 800 1000
fade away when the parametér increases. The quasi-
HamiltoniansH,; and H, appreciably simplify in the limit FIG. 4. The kinetic energyJ?/2) versus the number ofven
k>1,k<1; K, =«k=const and the functions;(6) reduce kicks forg=2. The solid line results from the classical linG&0);
to crosses and open circles correspond to the exact QKR map at the
same effective classical parameker but differentk.
K Ke . — Ki_
Fa(0)=1— geCOSB, Fi(6)= ?esm 6’—2—515'” 26, The effective parametef, differs from the produckT
(29 by the resonant part @#p/q)k. In this connection, the sug-
2 K2 3 gestion made in Ref.14] is worthy mentioning that in the
Fo(0)= Ke( 1— _e> COSO——2cos 20+ —-cos 3 regime of quantum diffusion the classical Chirikov's param-
240 24 240 eter is rescaled aEe=2k sin(T/2). This suggestion proved

to be in good correspondence with numerical simulations. In

in the caseq=1 and to the main order with respect to the small detuniaghe re-

Ke Ke Kg) K2 scaled valueK, is equivalent to ouK,. However, it is not
Fo(0)=1+ —— —| 1+—5|cosf+—-—cos 29 quite clear whether the whole sine make sense in the do-
8 2 48 24 : : .
mains of the regular motion. The quantum corrections to
K3 different structures in the quasi-Hamiltonians have different
- ﬁcos 3, forms neither of which can be identified with the terms of
expansion oK, over the detuningg.
K 5K 2 K2 K3 We see that for both resonances considered the domains
Fl(g)zfe 1+ 4_89> sine—?esin 29+9_gsin 30 of regular motion is estimated by the same inequality
<1, which insures the regular phase oscillations near corre-
K4 sponding nonlinear classical resonances.
——2sin 46, (30 Note in conclusion of this section that near the resonances
96 g=1,2 the motion does not depend on the integer number
5 4 This is a special manifestation of the following general prop-

K rties of th ndar ntum map. First of all, in vir f
F0(0)=——ecos20——ecos46, erties of the standard quantu ap. First of all, tue o

8 192 the identityeiz”‘mzzﬂ the rotation operatdd, and, conse-
quently, the Floquet transformatioid) are periodic in the
when gq=2. The Planck’s constant disappear and correparametes with period 1. Therefore it is enough to restrict
sponding quasi-Hamiltonians pass into classical Hamiltorpneself to consideration of the intervak@<1. In reality,
functions which depend on the ongffectiveparameteK..  only half of this interval exhausts all independent possibili-
Treating K, as the classical Chirikov's parameter, theseties whilst the mean kinetic enerdy(t) is calculated 14].
functions coincide with those obtained in R€8] and de-  |ndeed, presuming that=1/2+ s; |8s|<1/2, one can eas-
scribe the phase oscillations near the nonlinear resonanceg; see that the transformatiorSs— —d&s; 6— 7+ 6 is
respectively, of the first and second harmonics in the classiequivalent to the complex conjugation of the operafcand
cal standard map. Figure 4 illustrates on the example of theherefore does not changgt). Consequently, the problem
resonanceg=2 the quantum-classics correspondence. Thenvestigated is symmetric is with respect to the point
solid line is obtained by averaging 1000 classical trajectories- 1/2 and the lowest resonancgs-1,2 correspond to the

with J(t=0)=0 over isotropic initial angular distribution. ends of the principal interval ©s<1/2. That is why we
Crosses and circles show the results of numerical simulationgfer to these resonances as the boundary ones.

of the exact quantum QKR map for two different values of

the kl_ck parametek. '!'he effective classu_:al parameter is IV. LOWEST RESONANCES WITH NO CLASSICAL

kept fixed,K.=0.1. Being notably substantial fé&= 10, the LIMIT

deviations due to quantum effects become inessential when

k=100. Agreement at large times are improved by taking Contrary to the two boundary resonances of the previous
into account terms of higher powersJrin the expansion of section, those of them which lie inside the principal domain
the frequency of the nonlinear phase oscillations. 0<s<1/2 have no well defined limitk—x, K =const.
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We consider in this section the next two ongs; 3,4; (p ' '

=1). They provide typical though still exactly solvable ex- 20 F =10 f :::ZH
amples of the motion near a quantum resonance. The reso- . o t=ds+2
nanceq=3 is linked to the group SU(3) whereas the other b, 4 t=4s+3
one is still belongs to the same simplest group SU(2) as in 215 ______ “ “tecenerencencesnnnmscanannsonnsenscencant
the caseq=2. Indeed, it is easy to see that the rotation = e
operatorU, =e ("™ s equivalent to the transformation LIRS 1
e'(™4)(@371) of the spinor(14) [17]. Because of especially T eoke10)
simple structure of this group we start with consideration of 5F 1
the resonancg=4.

Using well known properties of the Pauli matrices we 0 — L
easily find for the resonant Floquet transformation 0 40 s 120 160 200

U(lr,iS): exp —iwn- o). (31 FIG. 5. The four branches of the functig(t,k). Asymptoti-

cally all of them converge to the same limjt(«,k) shown by
Again, we omit a trivial phase factor of no importance. Thedashed line.
periodic functions in the exponent are now defined as

" kZJW 40 sir?o sirfwt
== Sifg———
W(v)=arCCO{C?/;U), X 2m) -7 (1+sirfv)?
2k? e sirf{w(k2)t]
n(v)=;(sinv —sinv,—cosv) (32 2 oO|Z - [1+S|n2 kz)]2’ (37)
J1+sirfv ’ ’ '

The function x(t) fluctuates with time slowly approaching
The functionw(v) is the most important new element in the value
comparison to th&=2 resonance, which yields a linearly
increasing term in the angular momentum evolution
g g k? (1 N

Xo(K)=—| dz————. (39
' mJo  [1+sirf(kz)]?
AM(t)=—w'nt—2——— [1+sim(kz)]
1+sirfy . .
After extracting the constant part, the functig(t) naturally

X [ssin(wt)cogwt) + 1 sirf(wt)]. (33 stratifies into four smooth branches<0,1,2 .. .)

Here
—x™M(b) t=4s,
1 , )(t) t=4s+1
(cosv,—cosv,2 sinv), X :
et f V. cosv.2sine) xO=x0+ (39
x\(t) t=4s+2,
(34)
1 —x(t) t=4s+3.
[=[sXn]=-—=(1,1,0.
\/E Here
As before, the prime denotes differentiating with respect to
the angled; the three unit vectors, s, and| are pairwise 2 o cos At
orthogonal. As long as the angteremains fixed, the contri- (+)(t)— dv Traz
bution of the spin rotation is periodic. However, on the last 4mlo " (1+sirfo)
step averaging over the angle has to be done which leads to (40
E()=rt*+x(t) (35) )= K (7, _Sinawt
_ 4mJo (1+sin2v)2'
with

2 where the functiorw(v) = w/4— arcsin(co®/+2) is 27 pe-
simv riodic with respect to and changes from zero at=0 to the
1+ sirfy maximal valuer/2 whenv = 7. Stationary phase calculation
gives for y(*)(t) the asymtotics constt. Figure 5 presents
an example of the functiog(t) taken at integer values of

Simplification is possible in some limiting cases. It is easy
to see that (k) ~k*16[12] and x..(k) ~k?/4 when the pa-
and rameterk<<1. In this limit w(kz) ~ m/4+ k?z%/2 so that

= —((W )2)——f dosinfd———

k_( K L)

7 odzl+sin2(kz) 36

o
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k2 " — T . T

x(b) = Lcog k2t/2)Jo(k?t/2) + sin(k?t/2) 3, (k*t/2)], 051 o2 M 000004 |

o (41) 0.4 _ 0.1 1 b

X0 = [sin(kt/2) Jo(K*112) — cos Kt/2) 33 (K*1/2) . m 03 ]
'

0.0 !
. 0 10000 20000 1
0.2 ! .
The symbolJ,(x) stands for the Bessel function. For small 01 N

timesk?t<1 we find

("theory" - "exact")x 10

k2 k4 k4 0.0 I I n:l\ﬁ‘tr.u; 3.
O(t)y~—| 1— —=t? ()~ — 0 500 1000 1500 2000
X ﬂ)4<11§),x (O~3gt (@2 t
while FIG. 6. The kinetic energf versus the kick numbet for g
=4. The solid line shows the second order perturbation theory and
k 2 the points correspond to the exact QKR m@ach fourth kick is
X =xO(t)= 7 E_)O (43)  kept in the main part and each 500th in the isBeviations of the

theory from the exact map is indicated at the bottom.

if the time is large. In the most interesting cdse 1 simpli-
fication is achieved by averaging the fast varying factors irresonant interaction which contains spin and has no classical

the integrals overz in Egs. (36), (37). This givesr(k)  limit. The theory nicely reproduces all details of the evolu-
~(\/2—1)k?4+/2 which is in good agreement with numeri- tion up to very large times.
cal data though somewhat differs from the vakié12 given The width of the resonance is now much narrower than in

in Ref. [12]. At last, Xoo(k)%?’kzl:.l-G\/E in this limit. One  the case of the boundary resonances. Indéettrivatives of
sees that thg=4 resonance admits of very detailed analyti- the functionsw(v) and n(v) appear in higher corrections,

cal description. _ ~ which are large ifk>1. Validity of the expansion deterio-
(g\)legr the resonance calculation of the lowest correctioRates pecause of such contributions. One can roughly esti-
Q™ gives mate the width suggesting that the influence of the second
Fy=1: order correction should be relatively weak inside the reso-

nant domain. This gived kxk~ 2 which agrees with our
p numerical data. Outside this interval the expansion transpar-
IFy=- Ev’{n1n+ V2(n2+nd)[ws+(1-naw)lT}- o, e_ntly diverges. Con_trary to.the bqundary resonances, the re-
gion of regular motion vanishes in the classical litkit:
2 1 (44) even if the conditiorK .= kk= const holds.
FO:Kwn.ng?(U')Z 6n§+(n§+ n3)%(1—nsw) To explore the regularity domain and adjacent area in
more detail, we have fitted in Fig(a exact numerical data

[compare with Eq(24)]. Computation of the next correction for th? mean he'ghEP.' Of the pI_ateau asa function of the
QW, though making no principle problems, turns out to bedetunmg k. Two gualltatn{ely d|flie4rent regions are clea.rly
rather tedious and leads to quite cumbersome expressioc€N: the regularity domainc&10™7), where the plateau is

The most important contribution comes from the correction"versely proportiosnal to the detuning, and the quantum
to the matrixF, chaos area=10"") where the height is scattered around

the generic valud?~k®*. In the intermediate domain the
1 higher corrections become increasingly important and the
wfy+ gfz) o (45 perturbation expansion fails. In Fig(bj similar numerical
results are displayed for the cage 3.

1
oFy(0)=—Z(1=nD)(v")*

with the vectors, , given by At the resonance poirg=3 the wave function is natu-
rally split into three independent partsi(6)=¢(6)
f,=[ny(3—5n3)(1—n?),1+2n2—5n7,1+2n3—5n7)], +2(0)+ 3(60), each itemy,(0)==7_ . Cas, ,exdi(3s
+u)6] being an eigenfunction of the rotation operatdy
f,=[nyng(14—15n7),—nyng(4+15n3), — (4+7n7 =ex —(2mi/3)m?]. Arranging the items in the form of a
4 three-component spingcompare with Eq(14)]
—307)].
We drop here corrections to other matridesvhose influ-
ence is negligibly weak. In Fig. 6 the evolution generated by 1(0)
the quasi-Hamiltoniarisolid line) is compared to the simu-
lation of the exact QKR quantum map which is shown by V(o)=| 2A0) (46)
points. The detuning is chosen to be about 1/2 of its critical ¥3(0),

value after which the regime of regular motion breaks into
diffusion. The energye(t) scales with the first power of the
detuningk in this case. It is due to the form of the zero-orderthe rotation matrix acquires the forfuwe set againp=1)



g~ 0 0
U= 0 pB* 0)
0 0 1
/1 0 0 ,
=ex —? 01 0 :exp(—?%)\g)
0 0O

(47

On the last step we dropped a trivial phase factor. The diag-
onal matrix\ g is one of the standard generators of the group

SU(3) andB=exp(2mi/3)=—1/2+i+/3/2. Now, since the
factore™'? changes the index by =1, we have in such a
representation

etit9:>eii0)\i ,

>
T
Il
>
| —+
Il
o — O

(48)

The matrix\ , shifts each element in the colun#6) by one

position down and puts the lowest component on the very

top when the matrix\ _ is the reciprocal transformation.

Both the matrices are traceless. Therefore, the kick operator

gets the form
Ko —i0
Ug=ex —|§(e A +e 'N)

=eXp|’—i§[v()\++)\)—iv’()\+—)\)]}. (49

In terms of the standard $B) generators the matrix
reads

1 [
)\+:E()\1+)\4+)\6)_§()\2_)\5+)\7) (50)

The commuting matricea .. are simultaneously diagonal-
ized,

B 0 O B* 0 0
A(d2=| 0 B* 0 \da—{ 0 B 0],
0 0 1 0 0 1
(51)
with the unitary transformation
1 B B 1
o=—| B B 1 (52)
\/§ 1 1 1
Correspondingly, the diagonal form of the kick is
U(kdiag)=diagefiv+,efiu_,e*ivo),
(53

v+=kcog0+27/3), vo=v=Kkcosh.

Obviously,v ; +v_+ve=0.
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FIG. 7. (a) The plateau heighE,, versus detuningc near the
resonance=4. (b) The plateau heigh, versus detuning near
the resonancg=3. The solid lines correspond to the theoretical
relationE o 1/x.

The resonant Floguet operator is now represented as

U=, TS0, (54
where
)= [U, @, U09= g*[| — (1— )1 - 1T]U ("9
(55
with the one-column matrix being equal to
1
| o (56)
V3
1
Due to the factorized forn®5) of the matrixU{'$?, it can be

easily diagonalized. The eigenvectors prove to be equal to

—-1/2 di
U(k iag)

~ 1
(W)= (1— ) : _ [,
d’ ( :8 EV |e,|UV_ U,u|2 U(kdlag)_ u,u.
(57)
w,v=+,—,0

while the eigenvalues,, = e ") satisfy the cubic equation
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1) (diag) _ i T T
LSNP CS LS g=3 (k=20)
Ue9—y 3 Welu—u :

1—(1-p)17
(58

After this equation has been solved, the resonant Floquet
transformation is represented as

kxE

U= exp — i Ded ) =exd —iw(6)n(6)- ],

(59)
‘e=diage, €, €p)
in terms of the unitary matrixb=®,® where the tilded (@ t
matrix
0.5 \ll\l\ll T III\IIII T IIIIIIII T T 1T
D=, 3, ) (60) | g=4 (k=20) r=15x10" _
consists of the eigenvectof§7). On the last stage we ex- I
pressed the 83 Hermitian matrix in the exponent in Eq. 0
(59 in terms of the S(B) generators\,. The coefficients < 021
are given by ©
1 _ k=1 XiO—4
wna:Etr[xacbecDT]; a=1.2,...,8. (61) 0.1 i
_\ Il“\l\ll L 1 II\III| 1 IIIIIII| 1 III_
2 3
The vectom is a unit vector in the eight-dimensional adjoint b 10 10t 10

space. The transformations described give complete solution
of the problem forg=3 resonance. However, the final ex-  FIG. 8. The crossover region near the resonampe8 andq
pressions in terms of the roots of the cubic equati®) turn =4, The upper curves correspond io outside the resonance
out to be too cumbersome and we do not cite them here. Iwidths. The diffusion is clearly seen after a short initial resonant
the similar way, analytical solution can be found also for thestage while at smaller values of the detuning the diffusion does not
resonanceg=38 which is linked to the SU}) group. How-  develop. Double log scale is chosen to show all stages of the time
ever, algebraic problems increase very rapidly vgjth evolution.

Qualitatively, the situation near the lowest resonances
does not essentially differ from that near the resonapeé. is an  eigenfunction of the operator UP~Y
Figures &a), 8(b) demonstrate the transition from the regular =exp(—27im?q), which belongs to the eigenvalue
motion to diffusion near the resonanogs 3 andq=4. In  exf(—2#i/g)mod(x?,q)]. Therefore, the rotation for the

bot.h cases the resonant growth is seen at the first stggﬁgsonancem,q) is implemented by the diagonal matrix
which then changes by a sharp turnover. Further evolution

crucially depends on the detuning. If it is below some critical ] 2mip

value, the asymptotic plateau begins immediately after the 1Lr(D,Q)=GXF{ " g 7\0), (64)
turnover. However, above this value the plateau is preceded

by the stage of diffusion. It is clearly seen that the slope atvhere all matrix elements of the diagonal matxix are in-
the latter stage £-Ext) is twice as small as that at the tegers from the intervdll,q]. The kick operator looks as in
resonant stagex(- Ext?). Eq. (49) where now

V. GENERAL CASE P[00 1
: Ao=AT= (65)

. I 0
A. Floquet operator for a resonance of arbitrary order

The consideration presented above can be easily extendé#dO is the (@— 1)-dimensional zero column vector whén
to a resonance of an arbitrary ordgrThe wave function is IS the unit matrix of the same dimension. Both these matrices

expressed in the form of @component complex vector are traceless and their properties are similar to those in the
caseq=3 described above. In particular, they are simulta-
WT(0)=[h1(0)h2(0)- - - hg(0)]. (62 neously diagonalized with the matrix
The component W 1 1 2 i
(P )V=—(B*)’”=—exp( - —Mv). (66)
- Vg NG q

= C exdi(sq+u) 6], =123..., . . . .
Vu s:z—oo sarueXAI(SA+ )0, 3 q of eigenvectors which are the discrete plane waves inside a
(63 sample of the lengthg in the angular momentum space.
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These waves satisfy the periodic boundary conditions at th&ation exceeds 4. Nevertheless, some generic conclusions can
ends of the sample. The diagonal representation of the kicke drawn from Eq(71) even without explicitly knowing the
operator is a natural extension of E§3) functionsw(6) andn(6). The diagonal eigenvaluguasien-

ergy) matrix e is connected to the them as

Ude9=diage "v1,e7 "2, ... e Va),
67 e=w(n-d"\D), (73
=kcog 0+ il > v,=0
vuTKCo q gk m U= o where® is the unitary matrix
Thus, matrix elements of the kick operator are given by the P=(M, @2, ... ¢ (74)
finite sums

of the normalized eigenvectors of the resonant Floquet op-
q erator. Matrix elements of th@?— 1 matricesd ™\ ;& form
> e @mila)(u-veg-ive (68)  in (g%—1)-dimensional adjoint spaag vectorsY (") with
e=1 the components

Q-

(Uk)/.w:

while the resonant Flogquet matrix reads ¢(M)T)\a¢(v)5 2y (75

(res _ —(27rip/q)mod(ﬂ2,q)

(Upa)ur=e (U)o - (69) The diagonal part of E(.73) reads in these terms
Additional phases in Eq69), which become quasirandom
when the integerp andq are large enough, spoil the unifor-
mity along the sample and disrupt the plane waé&s. This
results in localization of eigenvectors of the resonant Floqu
matrix [15,5,16. On the other hand, the rotation operator is

converted with the reciprocal transformation into the matrix n.Y#=0: L. (77

NEM \/Ew(n,Y(M)), Y =y (rm) (76)
e\{\/hereas the off-diagonal part yields the orthogonality condi-
tion

Because of hermiticity of the generataxrg, all g vectors
Y(#) are real. For the same reason the remaining vectors with
w7 v make upg(q—1)/2 mutually complex conjugate pairs
Yy =y®rn* Using the known property

q
— (2miplq) 12
7“7“/:;::1 (q)(kv)):;,e (2mipla)y ((D(ky))#

q
> g @riplrg-@ailu-n) (70
v=1

Q|-

1
Equations(67), (70) bridges our representation to that used Ea ()\a)""()\a)”:2< 5””5‘”_65””5‘”> (78

in Ref.[12].
However, the both representations yet considered do naif generators of the Slgj group, we easily find for scalar

permit extending to the case of a finite detuning from theproducts of the vectorY

resonance. To make this possible, we have at first to repre-

sent the resonant Floquet operator in the from of an united

SU(q) transformatior{compare with Eq(59)],

mp' uvCu'v

’ ’ l
Y(:U-,V)*_Y(,U- v ):(5 57}”'_65 o, /). (79)

In particular, any given vectoY *") with w# v is orthogo-
nal to all others including the vectod®). Therefore, the set

_ k _
Ug?f): e(z”'p"‘)}‘Oex;{ —i E(e' IN,+e 1\_)
{Y®": 4 #v} constitutes an orthonormalized basis in the

= e~ (mPDhoex —i(vhg+uv )] g(g—1)-dimensional subspace of the adjoint space. As to
o~ the vectorsY®) which lie in the complementary orthogonal
=exp—iPed’) (g—1)- dimensional subspace, they are neither orthogonal,
=exp(—iwn-N)=exp —iH®), (72 , 1
Y .y’ = Supt = a (80)
where

" L [see Eq(79)], nor linearly independent because of relation

Ne=5 (s th0), N=gr(Ai—ho) (72)

> YW=t x=0. (81)
when the matrices\,;a=1,2,...0%—1 are the standard .

generators of the fundamental g-dimensional representatiogyc|yding, with the help of this relation, one of the vectors,

of the group SUg). As before, the irrelevant phase factor e can use the rest of them to construct an orthonormalized

generated by the trace Xp is omitted in final expression. pasis in the complementary subspace as well. In fact, the

This implies the condition te=X ,€,=0. overfullness mentioned becomes insignificant in the limit of
Diagonalization of the matrix69) cannot be carried out largeq.

analytically if the dimensiomy of the fundamental represen- On the other hand, it follows from E@73) that
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1 - 1 ~
wn=tr(edAd)=—= D €, YW,

5 24 (82

Using also Eq(80) together with the fact thaI,;e,LZO we
obtain finally

a3

Note that the wvectorn entirely belongs to the
(g—1)-dimensional subspace spanned by the vea®ts.

1 ~
E % GMY(“). (83)

B. Resonant evolution

In general case we have similar to E9)

AM(t) = H v, e 1 Ht)

Et 1 iNt
—t+ie'€
do- " '®

— (I)Td;{),efi;t

- deo

Jo

=AM(t) - A=[MOt+ M@ (1)]-A. (84)

The equation obtained is nothing but the matrix form of the

result of the papefr12].

One can advance as follows. First of all we find from this

equation

1 [de
M<°>=—§tr(—q>mcp)

1 ~
_ " (1)
do \/f EM eMY (85)

and

@T@,e—i;t

i o~
MD(t)=— Etr( glet T

q;“(u)q;)

de™
de

V2

> [ei(eﬂ—ly)t_l]< H* . )Y(w)*_
M,V

(86)
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~ d¢(V) u- Y
= Y] . = R
EM \/EU Y y |<¢ da ei(fu_EV)—]_,
(89
SO we come to
MO=>" (u. Y)Yy (90)
y73
and
1_ei(;M—;V)t
MOty =D ——————(u- Y)Yy (97)
mFEV 1— eI(EM_GV)

instead of Eqs(85) and(86). All derivatives disappear from
these expressions.

There exists another representation of the evolution which
is more suitable for our further purpose. It comes from the
connection

AM(t):—fthei;l(rGS)T i,}"_’[(res) R
0 de
(92)
t -
:—W’(n.)\)t_WnITJ dTe_'L(res)T)\_
0
Here
Z(res)z Wn~A (93)

and the matrix relation

exp(iwn-A7)(a-N)exp —iwn-A7)=alexp(—iwn- A7)\,
(94)

wherea is a (%>— 1)-dimensional vector, has been used. The
matricesA , whose matrix elements look as

(Aa)pe= —2if ape,

with the quantitiesf,,. being the structure constants of
SuU(q) group, are generators of the adjoint representation of

(99

Terms withp=v drop out the latter sum. Therefore, the two the group. From dynamical point of view, the interrelation of

vectorsM(©® and M™ Jie in the mutually orthogonal sub-
spaces. The vectav (Y)(t) is a quasiperiodic function of
time for any fixed value of the anglé. On the other hand,
direct calculation gives at the momemnt 1

AM(1)=UJ[M,U]_=—v'AgFtoN=U(v,0") .
(87)

Here we took into account that the free rotation operator

1{"®s) commutes with the angular momenturhand that the
kick operator reads),=exd —i(vAg+v'\))] [see Eq.(71)].
Components of the real vectafv,v’) are easily calculated
as

1 1
UaZEU tl’()\a)\|)—§v’tr()\a)\R). (88)

Comparison with Eqs(84)—(86) taken at the same moment
t=1 gives

the operatorg{(™®=w(n-\) andZ(*¥=w(n- A) is that be-
tween Hamilton and Liouville operators.
Now, let the vecton® be the eigenvector which belongs

to the eigenvalué, of the Liouville matrix £("®®. In accor-
dance with the meaning of the adjoint representation, this
vector obeys the condition

[n-A XAl :Tax(a) Y (96)
As one can easily convince oneself by direct substitution, the
vectorsY(*") satisfy the equation of the forit96) with the

eigenvalues,— ¢, . This elucidates the meaning of the vec-
tors 'Y as the eigenmodes of the Liouville operator. It is
convenient to re-numbeq(q—1)/2 solutions with u>v
with the help of the superscrigt=£8=1,2,...0(q—1)/2

so that

€,—€,=lgz.
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Then for the solutions withv> 1
im3 2 7a[MPOF). (104

—

X(P,g;K) =1
PRESVOLE [_p=—Tp. (98) t
Estimation of the interference terms is less certain. If the

stationary pointgdl;/d#=0 are not degenerate, termst
Sarise together with the linearly growing ones.

There also exisg—1 real eigenvectorg(?); a=1,2, ...,

g— 1 with zero eigenvaluek,=0. All thesezero modesire
pairwize orthogonal linear superpositions of the vector
Y®, Obviously, one of them is just the vectgf=n de- o
fined in Eq.(83). C. Vicinity of a resonance

Again, we can separate in E(Q2) the linearly growing Motion near the point of a resonance of the ordeis
and quasiperiodic contributions and then exclude the derivadescribed by the quasi-Hamiltonian
tivesw’ andn’ by comparing the result with Eq87). In

such a way we arrive at H=kH)+ k2()( &)

= kT4 20O+ 43 4. ..
MO=2 (u- )X, (99
“ 1 1
=Fo(0)+5{)F1(0)) +5IFa(0) )+, (109
1—e st
W(t)y= (u- BB
MOM=2, T X @o
The result(100) is identical to Eq(91). As to Egs.(90) and J=1®J, Fj(0)=F;(6)+F;(0)-A\. (106

(99), they express the vectdd () in terms of different sets
of vectors which are linear combinations of each other and he operatord’; are found from the matrix analogs of the
belong to the same set of the degenerate zero eigenvalug@nditions (9),(10). For the first correction Eq(9) gives
Thus we come to the conclusion that the resonant growtti2(6) =1 while
entirely originates from the zero Liouville modes while the
nonzero ones Yyield quasiperiodic evolution.

Kinetic energy at the momeittis equal to

1 1
f dﬂF‘l(G;—T)Z—f drAJ(— 1), (107
0 0

1 1 1
_ t
E()=5 ;} (AML(D)AM (1)) oA AWy fo dri(6:—7)=— jo dr(AJ(— )2
1 _ g
Here

The symbok- - -) stands for they averaging. As before, the ' .
initial state W, is chosen to be isotropicl{=(0,0, . . . ,1), ]F,-(O;—T)=e*'H(reS)T]FJ-(0)e'H(res)T,
s0 thatW A AW o= 8,7, With (109

AJ(—7)=kAM(—17).
7,=0 if a<(q—1)°—1, 7,=1if (q—1)’<a<q’-2,
The left-hand side in Eqg107), (108 are calculated with
Ngz-1=2(1—1/q). (102 the help of the connectio(94),

The first set of indices enumerates such matricgsvhich 1 ) B T Lo Fes),
include the SU¢—1) generators. Such matrices annul the deTFi(e’_T)_Fi(eHFJ (6) fodTew A
initial stateWw,. The second set marksg2 1 nondiagonal (110
N-matrices with nonzero elements in tlgh columns and
rows. The matrix\ is the last diagonal generator of the
group SUg). So, only those modeg'® are significant
which  have  appreciable projections  onto
(29—1)-dimensionahctive subspace indicated above.
According to Eq(101), the energy resonant growth rate is
is given by

Because of zero modes, a reciprocal to the oper&t6®
does not exists. This prohibits from straightforward integra-
thetion over r. To avoid the said difficulty, we regularize op-

erator£{®9=7s)—j 5| where infinitesimals must be set to
zero at the very end of calculation. Then the operator
iz{es)

1 - _
. iL.’(ares)q_: B 1-e

1
r(p,a;k) =5 2 7a([MEVT?). (103 fod e NCH (119

Contribution of the nonzero modes fluctuates with timebecomes well defined. Now, in virtue of Eq92), (99), and
and approaches asymptotically a finite positive value (100
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1-elf5™r 10° F I I E
J— — T § *
AJ(=7)=«u 1_e—i2§;esi')" (112 i k=10, p/q ~0.62 ...
10-1 E 3
Substituting Eqs(110, (111), and (112 in the condition
(107), we finally find S10% E 3
4
1+i7es)— g% 10° £ 3
Fl( 0)= ku' i 7res) i 7(res) A. (113) ]
(1-e' )H(1-e™' ) al _
107 E 3
Due to skew symmetry of the Liouville matrix,C(®)T 10_5: S
=—L®, the matrixF',(6) is Hermitian as Eq(105) im- 0 00 40 600 800 1000

plies. Other conditions are solved in the similar way. How-

ever, corresponding expressions are very bulky in general F|G. 9. The resonant growth rat€q) versus the resonance

case.When the kick parametk®1 the typical number of orderq. At eachq the p/q ratio is chosen to be the closest to the

harmonics in operator$;(¢) is proportional tok, with a  most irrational number(5)—1/2.

rapidly increasing coefficieng(q). This results in very fast

diminishing of the widths of resonances whgmgrows. calization and tunneling in the momentum space. The wave
In the approximation(105 the quasi-Hamiltoniar#{ is  function corresponding to an eigenvecipt) reads[12]

formally equivalent to the Hamiltonian of a quantum particle

with q intrinsic degrees of freedom which moves in @ ( A

: “ S (1) ( ) = (1) gimé

—1) component inhomogeneous “magnetic” field. In a yH(8) 2 Y€

sense, such a motion is a quantum analog of the classical mee

phase oscillations near a nonlinear resonance.

0

S=

q
. 1 :
_ (1) (60— 00) _~_ isq(6- o)
1/21 ¢V (00)e 277 2 € "

S=—0

VI. CONVERGENCY PROBLEM

. . . 11
Consideration presented above shows that in some do- (119

main of the detuning from a quantum resonance of a finiteone must distinguish here between the coordinate eigenvalue
order q evolution of QKR looks similar to a conservative 4 and the argumen# of the coordinate representation. In

motion described by the effective time-independent quasithe angular momentum representation this equation yields
Hamiltonian with a discrete quasienergy spectrum. A feW| )

. o V+sq|=|¢(v“)(0o)|, so that the angular momentum distri-
lowest terms of the expansid05) allow us to predict with  p 40 ie periodic with the period.
great accuracy the evolution for a very long time. More than 5. 4 -count of the quasirandom phases in the m&B9x
that, in the rangeA« of such a domainthe width of the (see 4150 discussion below this formuthe g-dimensional
resonancg which is determined by the condition that the eigenvectorsh® are, in fact, localized so that the number
influence of higher corrections is week, the accuracy is imy¢ their appreciable components is much smaller tigan
proved with each further correction kept. Nevertheless, it is’l’hen overlap of neighboring bumps of an eigenfuncﬂém)

clear that the formal expansidid05 cannot converge. In- . ; : . -
deed, within the width of any strong resonance of a relativel;%s’ typically, exponentially weak. This resembles the eigen

small order there exist an infinite number of resonances ofunctions of a particle moving in a periodic chain of potential
. S . wells. The resonant grows of the angular momentum of QKR
large orders which give rise to unrestricted resonant energ

. Pé similar to the transport through the chain of the particle
growth. Independently of the number of corrections taker(/vhich initially was IocaFI)ized in sogme well. The ratép,q?k)

into account, the quasi-Hamiltonian approach fails to reproig an analog of the mean value of the squared group velocity

ducAeCtzl;c"h aﬂ?erorvgtsr:)r\:v;r:fr;;g(p“esf If)ogtelzrglrjs;ssezpviﬁt;ﬂ?ﬁe of such a particle. The latter is proportional to the exponen-
Y, P.d tially small probability of tunneling between neighboring

order g increases and becomes exponentially smadj ifo- L > L _
ticeably exceeds the typical localization length. In Fig. 9 Wewells. This interpretation is in agreement with relatid?]

plot the empirical dependence of the resonant growth rate on 1 B

the resonance order Aj[ eaghq the ratiop/q is chosen to be r(p,q;k)= > > <(e;)2| ¢g")|2> (116

as close to the “most irrational” number/6—1)/2 as pos- m

sible. Our data are in agreement with earlier results from . .

Refs.[12,18,19. The solid line shows the fit with the help of Which directly follows from Eq.(84) and contains the

the semiempirical formula weighted-mean value of the squared “group velocities”
Returning to the expressiofl03), we conclude that in the

2 . . . .
caseq>| the Liouville zero modes with exponential accu-

r(p.a:k)= Eexﬁ—q/Zl) (114 racy lie in a subspace orthogonal to the active one.
The aforecited arguments show that in the case of lgrge
proposed in Ref[21]. the resonant growth reveals itself only on a very remote time

The qualitative arguments presented in R20] connect asymptotics owing to the tunneling between localized parts
the exponential suppression of the resonant rate with the I®f the globally delocalized quasienergy eigenfunctions. In
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particular, if such a resonance hits the domain of a strongnotion in the very point of a quantum resonance with the
one, it happens after the exponentially large time orderq s, generally, exactly described by a continuous trans-
o formation from the SUg) group. The two qualitatively dif-

A } (117 ferent contributions: growing with time and saturating, in the
kr(p,q;k) evolution of the QKR come respectively from the zero and
_ ) o nonzero modes of the generator of the §U{ransformation
when quadratically growing contribution becomes compajn the adjoint representation of the group. A perturbation
rable with the height of the platedty,~A/« formed due to  expansion exists near the point of a given quantum reso-
the influence of the strong resonar{see Figs. @), 7(b)].  npance, which provides quite a good description of the motion
We found it difficult to calculate the coefficiedt analyti-  jthin some domain—the width of the resonance. Inside the
cally but numerical simulations show that under conditionyidth of a strong resonance the motion is mastered by the
k>1 it weakly depends on the kick paramekeas well as on  resonance. This motion is proved to be similar to that of a
the order of the strong resonance. quantum particle withy intrinsic degrees of freedom along a

Exponential effects of such a kind, which are characterisgijrcle in an inhomogeneous|t—1) component “magnetic”
tic of the tunneling, are well known to be beyond the reachg|q.
of perturbation expansion. For this reason they cannot be The width of a quantum resonance strongly depends on its
described in the framework of the quasi-Hamiltonianorderq. The resonances with smallest orders are the stron-
method. This approach reproduces only those features of thgsst ones and have maximal widths. The motion within the
motion which are determined by the discrete component ofyidth of such a resonance, being dominated by it, is proved
the quasienergy spectrum. In particular, contribution of th&g e regular. In all cases save the two boundary resonances
non-zero modes much faster attains its asymptotic valug=1 2 the regular quantum motion exists in spite of the fact
(104). As aresult, for all weak resonances inside the width ofthat the corresponding classical motion is chaotic and expo-
a strong one the time dependence of the p(t) is dic-  nentially unstable. The widths of these resonances vanish in
tated during exponentially long timeés:t, by their strongest  the classical limitk—, T—0,K.=kT=const. Such a situ-
brother. ) ation holds as long as the conditigr| takes place, where

On the other hand, if the order of the resonance we arg js the |ocalization length for close typical irrationg) al-
interested in is very largg;>1, and this resonance lies in the though the widths rapidly diminishe wittp In the opposite
region of typical irrationals being far from all strong reso- case of very large ordexs>| and p~q the motion weakly
nances, already a very small detuning suffices for killing thqjepends on thg and as well as on the detuning The
quadratic growth with exponentially small rate. At the samemotions with rational and irrational differ only on a very
time, such a shift does not influence the tetfi(t) which  remote time asymptotics. During a long though finite time

reproduces on exponentially largénough finitg time scale  the motion reveals universal features characteristic for the
all characteristic features of the “localized quantum chaos”|gcalized quantum chaos.

r

cexp(q/al)

[16].
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