
N,

PHYSICAL REVIEW E MAY 2000VOLUME 61, NUMBER 5
Quantum resonances and regularity islands in quantum maps
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We study analytically as well as numerically the dynamics of a quantum map near a quantum resonance of
an orderq. The map is embedded into a continuous unitary transformation generated by a time-independent
quasi-Hamiltonian. Such a Hamiltonian generates at the very point of the resonance a local gauge transforma-
tion described by the unitary unimodular group SU(q). The resonant energy growth is attributed to the zero
Liouville eigenmodes of the generator in the adjoint representation of the group while the nonzero modes yield
saturating with time contribution. In a vicinity of a given resonance, the quasi-Hamiltonian is then found in the
form of power expansion with respect to the detuning from the resonance. The problem is related in this way
to the motion along a circle in a (q221)-component inhomogeneous ‘‘magnetic’’ field of a quantum particle
with q intrinsic degrees of freedom described by the SU(q) group. This motion is in parallel with the classical
phase oscillations near a nonlinear resonance. The most important role is played by the resonances with the
orders much smaller than the typical localization lengthq! l . Such resonances master for exponentially long
though finite times the motion in some domains around them. Explicit analytical solution is possible for a few
lowest and strongest resonances.

PACS number~s!: 05.45.Mt
te
d
th

m
d
e
le
r

bu
t

io
n
de
w

f
e
at
ys
y
ra

a
vo-
si-
n
ase
is
pa-
eso-

ad
y
gst
en
nd

a
In

f
e-
f

I. INTRODUCTION

Classical canonical two-dimensional maps origina
from the Poincare sections in the phase space have playe
exceptional role in the establishing our understanding of
origin and properties of the dynamical chaos@1,2#. Formally,
they correspond to nonconservative Hamiltonian syste
with one degree of freedom driven by instantaneous perio
kicks. The phase plane of such a map is, generally, v
complex and consists of intimately entangled domains fil
by regular and chaotic trajectories. The chaotic domains
main isolated from each other if the driven force is weak,
they join and global chaos appears when the strength of
force exceeds some critical value . After that, regular mot
survives only inside isolated islands of the phase pla
where phase oscillations near the points of mainly low or
nonlinear resonances take place, whose areas diminish
the strength growing.

Existence of the chaotic domains signifies absence o
global analytical integral of the motion. At the same tim
there exist in the regions of the regular motion approxim
local integrals which can be chosen in many different wa
It should seem, however, that the most convenient and ph
cally sounding choice is that of the quasienergy integ
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which is directly linked to the periodicity of the driving
force. In such an approach@3#, the regular regime near
nonlinear resonance is juxtaposed with the continuous e
lution described by a conservative effective qua
Hamiltonian function. Corresponding canonical Hamilto
equations generate continuous trajectories on which all ph
points of the original map lie. The quasi-Hamiltonian
found by perturbation expansion with respect to a small
rameter which can, in particular, be the closeness to the r
nance.

After the quantum extension of the canonical maps h
been suggested in Ref.@4#, the quantum maps were widel
used as informative models of quantum chaos. Amon
them Chirikov’s standard map, i.e., the periodically driv
planar rotor, proved to be the most economic, fruitful, a
popular. The unitary Floquet transformationU which
evolves the QKR wave functionc(u) over each kick period
is given by

U5UrUk[expS 2
i

2
Tm̂2Dexp~2 ik cosu! ~1!

and consists of successive kick transformationUk with the
strengthk and a free rotationUr during the timeT. Herem̂
52 id/du and we put\51. The standard map provides
local description for a large class of dynamical systems.
particular, there exists a tight and remarkable analogy@5#
between discovered in Ref.@4# dynamical suppression o
chaos in QKR and Anderson localization in quasi-on
dimensional~1D! disordered wires. The diffusive growth o
5057 ©2000 The American Physical Society
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the QKR energy turns out to be restricted to a certain ma
mal value because of dynamical localization in the angu
momentum space.

At the same time, there exist some important features
the QKR dynamics, namely, so-called quantum resonan
which have no counterparts in the disordered systems~see
@6# and discussion in Refs.@7,8#!. At a fixed value of the kick
parameterk, special resonant regimes of motion appear@4#
for everywhere dense set of the rational values§5T/4p
5p/q, where the integersp andq are mutually prime. Under
these conditions the rotator regularly accumulates ene
which grows quadratically in the time asymptotics@12,16#.
Both the restricted diffusion and the quantum resonan
were experimentally observed in the atom optics imitation
the QKR reported in Ref.@9#. Quite recently, the regime o
quantum resonances reappeared in a new aspect in co
tion with the electron scattering with excitation of th
Wannier-Stark resonances@10,11#.

The interesting and important problem of the impact
the quantum resonances on the QKR dynamics and the i
play between resonant and diffusive regimes is still far fr
being satisfactorily understood. Investigation of this probl
is the main goal of the present paper. We develop a gen
approach to the problem of the motion in a vicinity of
quantum resonance with an arbitraryorder q. Generally, the
influence of a quantum resonance depends on the rela
between the orderq and the localization lengthl in the an-
gular momentum space. We show that the most impor
role is played by the resonances withq! l : for finite regions
around them the quantum motion is explicitly shown to
regular and dominates the motion for all values§ inside
these regions—the resonancewidths. More precisely, the
motion is well described, during large though finite times,
a time-independent effective quasi-Hamiltonian with one
tational degree of freedom and with a discrete spectr
Such a motion is in parallel with the classical phase osci
tions near a nonlinear resonance. On the contrary, when
resonance order is large enough,q@ l the resonant quadrati
growth appears only in the remote time asymptotic and
lesser times the motion reveals universal features chara
istic of the localized quantum chaos.

In Sec. II we explain the concept of the effective qua
Hamiltonian on which our approach is based. The pow
expansion of the quasi-Hamiltonian near a quantum re
nance is constructed in Sec. III. In this section we also c
sider analytically and numerically two strongestboundary
quantum resonances withq51,2 and their classical limits
Two more strong resonances are investigated in the next
IV. Contrary to the boundary resonances, they disappea
the formal limit\→0. General consideration of a resonan
of an arbitrary order is presented in Sec. V. At last, t
problem of convergence of our expansion is discussed
Sec. VI.

II. QUASI-HAMILTONIAN

Evolution of the QKR wave function forn kicks is given
by n successive repetitionsU(n)[Un of the Floquet trans-
formation ~1!. Being unitary, the latter can be expressed
terms of a Hermitian operatorH as U5exp(2iH). Let us
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now consider continuous unitary transformation U(t)
5exp(2iHt). According to such a definition, the wave fun
tion c(u;t)5U(t)c(u;0) at the integer momentst5n coin-
cides with the quantum state of the map~1!. On the other
hand, the functionc(u;t) satisfies standard Schro¨dinger
equation with the time-independent HamiltonianH. Obvi-
ously, the very possibility of the formal construction d
scribed is based on the periodicity of the map. That is w
we refer below to this operator as thequasi-Hamiltonian.

Let ue& be the eigenvector of the Floquet operator~1!,
which belongs to an eigenvaluee2 i e. Then the quasi-
Hamiltonian can be expressed as

H5(
e

ue&e^eu, ~2!

where the sum runs over the quasienergy spectrum$e% of the
rotator. As usual, each quasienergy is defined up to a t
multiple 2p which results in corresponding ambiguity of th
quasi-Hamiltonian~2!. However, each time one can fix th
operatorH in the way most convenient for calculation. Th
ambiguity does not influence the evolution operatorU(t) at
integer moments. As a rule, to get rid of the ambiguity w
suggest continuity of the quasi-Hamiltonian with respect
parameters under consideration. In the coordinate repre
tation, the quasi-Hamiltonian is an operator function of t
pair of canonically conjugate observablesu andm̂. Since the
operatorsm̂2 and cosu do not belong to any finite algebra
the operatorH cannot generally be found in a closed form
Rather, it is expressed as an infinite sum of successive c
mutators. More than that, one anticipates extremely non
form dependence of the operatorH on the parameters§ and
k.

However, the problem simplifies enormously if the co
dition of a quantum resonance is fulfilled. As has be
shown by Izrailev and Shepelyansky@12#, at the point of a
quantum resonances with the orderq the Floquet operator
can, generally, be presented as aq3q matrix. This matrix
turns out to be~see below! a local gauge transformation from
the unitary SU(q) group generated by a Hermitian matr
H̃(res)(u) which depends only on the angle and does not c
tain the angular momentum. Owing to this fact, the probl
of calculation of the matrixH̃(res) becomes as simple~or
complicated! as that of diagonalization of aq-dimensional
unitary matrix. The latter can be carried out analytically
the matrix order does not exceed 4.

Dependence of the quasi-Hamiltonian on the angular m
mentum recovers out of the points of quantum resonance
some domain near a given quantum resonance with an o
q this dependence can be found in the form of a power
pansion over the detuning from the resonance. This exp
sion turns out to appear in the form of series, in particular
powers of the angular momentum@see Eq.~105! below# with
the resonance matrixH̃(res)(u) being the zero-order term in
the series. Actually, such an expansion is quite a formal o
The question of convergence by no means is trivial. At be
the series is of only asymptotic nature. Nevertheless,
shall see below that a few its first terms give surprising
good description of the evolution during a very long time
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III. BOUNDARY RESONANCES

A. Regularity domains and quasi-Hamiltonians

In the simplest caseq51, the rotation operatorUr is
equivalent to the identity and the QKR evolution during
time t is described by the unitary phase transformat
e2 ivt; v(u)5k cosu. This transformation parametrically de
pends on the angleu and therefore has continuous eige
value spectrume(u)5v(u). By the momentt, an isotropic
initial state, which we suggest throughout the paper, evo
into the wave function

c~u;t !5
1

A2p
exp~2 ikt cosu! ~3!

with ;kt harmonics. The natural probe of the number
harmonics is the angular momentum operatorm̂52 id/du
whose time evolution obeys the linear law

m̂~ t ![eivtm̂e2 ivt5m̂1eivt@m̂,e2 ivt#25m̂2v8t,
~4!

v8[dv/du.

This yields the quadratic growth of the kinetic energyE(t)
of the rotor

E~ t ![
1

2
^@m̂~ t !2m̂#2&5

1

2
^~v8!2&t25

k2

4
t2 ~5!

with the resonant growth rate r5k2/4. Here and below the
angular brackets denote averaging over the angleu.

Let us now consider a vicinityk5T24pp of a main
resonanceq51. The time-independent quasi-HamiltonianH
in the vicinity is introduced by representing the Floquet o
erator in the form

Up,1~k!5expS 2
i

2
km̂2Dexp~2 ivt !5expS 2

i

k
H1~k! D

~6!

with

H1~k!5kv1k2Q~k!. ~7!

It follows that the operatorQ(k) must satisfy the condition

expS 2
i

2
km̂2D5T* expH 2 ikE

0

1

dtQ~k;2t!J ,

~8!
Q~k;2t!5e2 ivtQ~k!eivt,

where the symbolT* stands for the anti-chronological orde
ing. Suggesting the operatorQ(k) to permit expanding in
power seriesQ(k)5Q(0)1kQ(1)1 . . . over the detuning
k, one comes to successive relations

E
0

1

dtQ(0)~2t!5
1

2
m̂2, ~9!
n

s

f

-

E
0

1

dtQ(1)~2t!52
i

2E0

1

dt1

3E
0

t1
dt2@Q(0)~2t1!,Q(0)~2t2!#2

~10!

and so on, which allow us to find the quasi-Hamiltonian~7!
up to desired accuracy. Equation~9! implies that the evolu-
tion described by the map~1! is smoothed in such a way tha
the overall effect of the lowest order correctionk2Q(0)

within one period is identical to the kinetic energy opera
K5J2/2;km̂[J. Being a small factor in front of the angl
derivative, the detuningk plays here the role of the dimen
sionless Planck’s constant whileJ is the angular momentum
operator in the units chosen. With only the two first corre
tions ~9!,~10! being retained the quasi-Hamiltonian acquir
the form

H15
1

2
JF2~u!J1

1

2
$J,F1~u!%11F0~u! ~11!

of the Hamiltonian of a generalized pendulum. The perio
functionsFi(u) depend on the angle via the kick potenti
v(u). In the lowest approximation

F2~u!51; F1~u!52
k

2
v8; F0~u!5kv1

k2

12
~v8!2,

~12!

when the next correction adds

dF2~u!52
k

6
v; dF1~u!5

k2

12
v8v;

~13!

dF0~u!52
k3

60
~v8!2v2

k3

48
v.

In further corrections higher powers of the operatorJ also
arise.

Uprising of the angular momentum operatorJ in Eq. ~11!
drastically changes the eigenvalue problem. The angleu is a
quantum-mechanical coordinate operator in this proble
and the spectrum of the quasi-HamiltonianH1 as well as of
the Floquet operator becomes discrete because of the
odic boundary condition. The main effect of the term qu
dratic in J consists in cutting off the unrestricted kinetic e
ergy growth. This is well seen in Fig. 1 Already the lowe
correction~dotted line! describes reasonably good the tu
off from the quadratic resonant growth, as well as the me
height of the saturation plateau. The next one~solid line!
substantially improves the description and reproduces w
also the details of quantum fluctuations in the plateau reg
Influence of the further corrections, which contain, in pa
ticular, higher powers of the angular momentumJ, remains
weak in the finite domainDk, the width of the resonance
where the angular momentumJ in the plateau region is stil
sufficiently small.

Before analyzing the conditions of validity of Eq.~11! in
more detail, we consider the resonanceq52 because of a
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tangible similarity of the two cases. Forq52, the rotation
operatorUr5e2 ippm̂2

, wherep is an odd number, has onl
two eigenvalues 1 and -1. Obviously, any periodic funct
c1(u)@c2(u)# which contains only even~odd! harmonics is
an eigenfunction belonging to the eigenvalue 1~21!. An
arbitrary statec(u) can be written down as the linear supe
position c5c11c2 of these eigenfunctions. Therefore,
the Hilbert space of the periodic functions the operatorUr is
isomorphic to the 232 Pauli matrixs3. One can actualize
this isomorphism by representing the statec(u) in the form
of a two-component spinor

C~u!5S c1~u!

c2~u!
D . ~14!

In this representation the differentiation operatorm̂ which
does not change harmonics’ numbers grows into the diag
matrix

M5S m̂ 0

0 m̂
D , ~15!

while any periodic coordinate operatorF(u) looks as

F~u!5 f 1~u!I 1 f 2~u!s1 ~16!

with I being the 232 unity matrix. At last, matrix element
of dynamical operators take the form

O2,15E
2p

1p

duC2
†~u!O~u,M!C1~u!,

~17!

E
2p

1p

duC†~u!C~u!51.

The free rotation is described now by the matrix opera
Ur5s35e2 i (p/2)(s321) and the kick operator reads asUk
5e2 ivs1. Simple manipulations with Pauli matrices lead
the following expression for the resonant Floquet operato

Up,2
(res)5ei (p/2)expS 2 i

p

2
n•sD , ~18!

FIG. 1. The kinetic energŷJ2/2& versus the number of kickst
for the main resonanceq51. The dotted and solid lines show pre
dictions of the proposed theory in the first and second orders
spectively. Open circles correspond to the exact QKR map.
al

r

:

where the unit vectorn5(0,sinv, cosv). Up to the trivial
phase factor, this is a spin-flip operator which belongs to
unitary unimodular group SU(2). Therefore, corresponding
evolution in the continuous timet fully reduces to the spin
rotation.

In particular, evolution of the angular momentum is giv
by the equation

DM~ t !5expS i
p

2
n•st DMexpS 2 i

p

2
n•st D2M5DM ~ t !•s.

~19!

The vectorDM (t) is easily calculated by making use of th
formula

expS 2 i
p

2
n•st D5cos~pt/2!2 in•s sin~pt/2!.

Simple transformations lead to the result

DM ~ t !52v8@ssin~pt/2!cos~pt/2!1 l sin2~pt/2!#,
~20!

where the unit vectorss and l are defined by

n85v8~0, cosv,2sinv ![v8s; l5@s3n#5~1,0,0!.
~21!

The three unit vectorsn,l,s form an orthogonal basis in th
three-dimensional adjoint space of the SU(2) group. T
evolution ~20! is purely periodic in time, so that the kineti
energy

E~ t !5
1

2
^@DM ~ t !#2&5

1

2
^~v8!2&sin2~pt/2!5

k2

4
sin2~pt/2!

~22!

does not grow but rather jumps between two values 0
k2/4 when the timet runs over integer values@12#.

The motion in a neighborhood of the considered re
nance is described by the quasi-Hamiltonian matrix

H25k
p

2
n•s1k2Q~k! ~23!

@compare with Eq.~7!# whereQ is a (232)-matrix operator
in the spinor space. This operator satisfies the condition~8!

with m̂ substituted by the matrixM from Eq. ~15!. With the
same accuracy as above, the quasi-Hamiltonian reads a
Eq. ~11! again where the angular momentumJ and the func-
tions~12! are replaced by 232 matrices. In the first approxi
mation they are equal to

F2~u!5I ; F1~u!52
k

2
v8S l1

p

2
sDs,

~24!

F0~u!5k
p

2
n•s1

k2

4
~v8!2I .

The Hamiltonian~11!,~24! describes the motion of a quan
tum particle with the spin-1/2 along a circle in an inhom
geneous magnetic field. The terms linear in the angular m
mentum J mimic a sort of the ‘‘spin-orbital’’ interaction.

e-
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Figure 2 ~points! shows that quantitative agreement of th
approximation with exact numerical simulations~circles!
worsens rather fast. However, the second correction wh
can be represented in the compact form

k3Q(1)5
k

16H J,FJ,S p

4
~v8!2n2v lD •sG

1
J

1

1
5k2

32
$J,v8v%1

1
k3

32
~v8!2vS p

2
s2 lD •s ~25!

noticeably improves the correspondence~crosses!. The two
branches correspond to even~starts from zero! and odd
~starts fromk2/4) kicks.

At the first glance, an important difference is seen in thv
dependence of the functionsFi in Eq. ~12! on the one hand
side and in Eq.~24! on the other. In the former case, th
number of harmonics do not exceeds the power of the de
ing k. This property holds also in the higher approximatio
Likewise, the factorsk andk are balanced in the similar wa
so thatk always combines withk into the effectiveChirik-
ov’s parameterKe5kk. Afterwards only positive extra pow
ers ofk may remain. Therefore, the influence of the high
terms of the expansion can be expected to be weak w
Ke,1.

In contrast, the unit vectorsn ands in Eq. ~24! in the most
interesting casek@1 contain;k harmonics and their de
rivatives with respect tou are large. This leads to terms wit
extra powers ofk in the higher corrections, which are no
compensated by the small detuningk and enhance highe
corrections. For example the term in Eq.~25!, which is qua-
dratic with respect to the operatorJ, contains uncompensate
factor k. However, such terms turn out to be inefficient a
cancel finally out due to the identity

@Up,2
(res)#252exp~2 ipn•s!5I , ~26!

so that the caseq52 does not essentially differ from th
main resonance as it concerns the role of higher correcti
This fact can be proven by disentangling the resonant

FIG. 2. The kinetic energŷJ2/2& versus the number of kickst
for q52. Dots and crosses show predictions of the theory in
first and second orders. Open circles correspond to the exact Q
map. The two~almost! symmetric branches are due to the onlyeven
or only odd kicks, respectively.
h

n-
.

r
en

s.
rt

from the squared Floquet operatorUp,2
2 (k) after which the

nondiagonal s matrices disappear from the quas
Hamiltonian.

However, it is appreciably simpler to get rid of the no
trivial SU(2) algebra by separating evolution at only ev
and only odd kicks. It is then enough to smooth directly t
squared Floquet transformation. Taking into account tha
the Hilbert space of periodic functionse2 ipm̂2

cosue2ipm̂2

52cosu, one comes to the condition

Up,2
2 ~k!5expS 2

i

2
km̂2DexpF2

i

2
k~m̂2v8!2G

5expF22
i

k
H̄2~k!G . ~27!

The quasi-Hamiltonian is now found with the help of th
Baker-Hausdorf expansion

H̄25
1

2
~K1K̄!2

i

4k
@K,K̄#22

1

24k2
†K2K̄,@K,K̄#2‡2

2
i

48k3
@K,†K̄,@K,K̄#2‡2#21••• . ~28!

HereK5 1
2 J2 and K̄5 1

2 (J2kv8)25 1
2 (J1kk sinu)2 are the

kinetic energy operators at the momentst50 andt51, re-
spectively. Since each commutator gives at least one po
of the small detuningk, uncompensated factorsk do not
appear in the series. All four terms displayed in Eq.~28! are
easily calculated explicitly though corresponding expressi
are too lengthy for presenting them here. Figure 3 dem
strates very good agreement of the evolution described
this quasi-Hamiltonian with exact numerical simulation
Only the even branch is shown.

Theq52 resonance of QKR is an example of the spec
regimes of motion of periodically driven systems which a
known asantiresonances. The main feature of them is peri
odic exact recurrence@see Eq.~26!# after a certain number o
kicks. General consideration of the motion near antire
nances is presented in Ref.@13#. The authors showed, in

e
R

FIG. 3. The kinetic energŷJ2/2& versus the number ofeven
kicks for q52. The solid line shows evolution predicted by th
quasi-Hamiltonian~28! while the open circles correspond to exa
numerical simulations. The dotted curve at the bottom indicates
deviation of the theory from the exact solution.
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particular, that such a motion has regular classical limit.
fact, this is valid not only forq52 antiresonance but also fo
the actual resonanceq51 ~see next subsection!. More than
that, we will demonstrate in Secs. IV and V that domains
a regular quantum motion exist near all resonances witq
! l . However, contrary to the two boundary resonances,
widths of other resonances diminish in the classical limit
that this motion has no direct counterpart in the class
standard map.

B. The classical limit

In both cases already considered the quantum fluctuat
fade away when the parameterk increases. The quas
HamiltoniansH1 and H̄2 appreciably simplify in the limit
k@1,k!1; Ke 5kk5const and the functionsFi(u) reduce
to

F2~u!512
Ke

6
cosu, F1~u!5

Ke

2
sinu2

Ke
2

24
sin 2u,

~29!

F0~u!5KeS 12
Ke

2

240D cosu2
Ke

2

24
cos 2u1

Ke
3

240
cos 3u

in the caseq51 and to

F2~u!511
Ke

8
2

Ke

2 S 11
5Ke

2

48 D cosu1
Ke

2

24
cos 2u

2
Ke

3

32
cos 3u,

F1~u!5
Ke

2 S 11
5Ke

2

48 D sinu2
Ke

2

8
sin 2u1

Ke
3

96
sin 3u

2
Ke

4

96
sin 4u, ~30!

F0~u!52
Ke

2

8
cos 2u2

Ke
4

192
cos 4u,

when q52. The Planck’s constant disappear and cor
sponding quasi-Hamiltonians pass into classical Hamil
functions which depend on the onlyeffectiveparameterKe .
Treating Ke as the classical Chirikov’s parameter, the
functions coincide with those obtained in Ref.@3# and de-
scribe the phase oscillations near the nonlinear resonan
respectively, of the first and second harmonics in the cla
cal standard map. Figure 4 illustrates on the example of
resonanceq52 the quantum-classics correspondence. T
solid line is obtained by averaging 1000 classical trajecto
with J(t50)50 over isotropic initial angular distribution
Crosses and circles show the results of numerical simulat
of the exact quantum QKR map for two different values
the kick parameterk. The effective classical parameter
kept fixed,Ke50.1. Being notably substantial fork510, the
deviations due to quantum effects become inessential w
k5100. Agreement at large times are improved by tak
into account terms of higher powers inJ in the expansion of
the frequency of the nonlinear phase oscillations.
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The effective parameterKe differs from the productkT
by the resonant part (4pp/q)k. In this connection, the sug
gestion made in Ref.@14# is worthy mentioning that in the
regime of quantum diffusion the classical Chirikov’s para
eter is rescaled asK̃e52k sin(T/2). This suggestion proved
to be in good correspondence with numerical simulations
the main order with respect to the small detuningk the re-
scaled valueK̃e is equivalent to ourKe . However, it is not
quite clear whether the whole sine make sense in the
mains of the regular motion. The quantum corrections
different structures in the quasi-Hamiltonians have differ
forms neither of which can be identified with the terms
expansion ofK̃e over the detuningk.

We see that for both resonances considered the dom
of regular motion is estimated by the same inequalityKe
,1, which insures the regular phase oscillations near co
sponding nonlinear classical resonances.

Note in conclusion of this section that near the resonan
q51,2 the motion does not depend on the integer numbep.
This is a special manifestation of the following general pro
erties of the standard quantum map. First of all, in virtue
the identitye62p im̂2⇒1 the rotation operatorUr and, conse-
quently, the Floquet transformation~1! are periodic in the
parameter§ with period 1. Therefore it is enough to restri
oneself to consideration of the interval 0,§,1. In reality,
only half of this interval exhausts all independent possib
ties whilst the mean kinetic energyE(t) is calculated@14#.
Indeed, presuming that§51/21d§; ud§u<1/2, one can eas
ily see that the transformationd§→2d§; u→p1u is
equivalent to the complex conjugation of the operatorU and
therefore does not changeE(t). Consequently, the problem
investigated is symmetric in§ with respect to the point§
51/2 and the lowest resonancesq51,2 correspond to the
ends of the principal interval 0<§<1/2. That is why we
refer to these resonances as the boundary ones.

IV. LOWEST RESONANCES WITH NO CLASSICAL
LIMIT

Contrary to the two boundary resonances of the previ
section, those of them which lie inside the principal doma
0,§,1/2 have no well defined limitsk→`, Ke5const.

FIG. 4. The kinetic energŷJ2/2& versus the number ofeven
kicks for q52. The solid line results from the classical limit~30!;
crosses and open circles correspond to the exact QKR map a
same effective classical parameterKe but differentk.
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We consider in this section the next two ones,q53,4; (p
51). They provide typical though still exactly solvable e
amples of the motion near a quantum resonance. The r
nanceq53 is linked to the group SU(3) whereas the oth
one is still belongs to the same simplest group SU(2) a
the caseq52. Indeed, it is easy to see that the rotati
operatorUr5e2 i (p/2)m̂2

is equivalent to the transformatio
ei (p/4)(s321) of the spinor~14! @17#. Because of especially
simple structure of this group we start with consideration
the resonanceq54.

Using well known properties of the Pauli matrices w
easily find for the resonant Floquet transformation

U1,4
(res)5exp~2 iwn•s!. ~31!

Again, we omit a trivial phase factor of no importance. T
periodic functions in the exponent are now defined as

w~v !5arccosS cosv

A2
D ,

n~v !5
1

A11sin2v
~sinv,2sinv,2cosv !. ~32!

The functionw(v) is the most important new element
comparison to theq52 resonance, which yields a linear
increasing term in the angular momentum evolution

DM ~ t !52w8nt2A2
v8

11sin2v

3@ssin~wt!cos~wt!1 l sin2~wt!#. ~33!

Here

s5
1

A11sin2v

1

A2
~cosv,2cosv,2 sinv !,

~34!

l5@s3n#5
1

A2
~1,1,0!.

As before, the prime denotes differentiating with respec
the angleu; the three unit vectorsn, s, and l are pairwise
orthogonal. As long as the angleu remains fixed, the contri-
bution of the spin rotation is periodic. However, on the la
step averaging over the angle has to be done which lead

E~ t !5rt 21x~ t ! ~35!

with

r ~k!5
1

2
^~w8!2&5

k2

4pE2p

p

du sin2u
sin2v

11sin2v

5
k2

4 S 12
4

pE0

1

dz
A12z2

11sin2~kz!
D ~36!

and
o-
r
in

f

o

t
to

x~ t !5
k2

2pE2p

p

du sin2u
sin2wt

~11sin2v !2

5
2k2

p E
0

1

dzA12z2
sin2@w~kz!t#

@11sin2~kz!#2
. ~37!

The functionx(t) fluctuates with time slowly approachin
the value

x`~k!5
k2

p E
0

1

dz
A12z2

@11sin2~kz!#2
. ~38!

After extracting the constant part, the functionx(t) naturally
stratifies into four smooth branches (s50,1,2, . . . )

x~ t !5x`~k!15
2x (1)~ t ! t54s,

x (2)~ t ! t54s11,

x (1)~ t ! t54s12,

2x (2)~ t ! t54s13.

~39!

Here

x (1)~ t !5
k2

4pE0

p

dv
cos 2w̃t

~11sin2v !2
;

~40!

x (2)~ t !5
k2

4pE0

p

dv
sin 2w̃t

~11sin2v !2
,

where the functionw̃(v)5p/42arcsin(cosv/A2) is 2p pe-
riodic with respect tov and changes from zero atv50 to the
maximal valuep/2 whenv5p. Stationary phase calculatio
gives forx (6)(t) the asymtotics const/At. Figure 5 presents
an example of the functionx(t) taken at integer values oft.

Simplification is possible in some limiting cases. It is ea
to see thatr (k)'k4/16 @12# andx`(k)'k2/4 when the pa-
rameterk!1. In this limit w̃(kz)'p/41k2z2/2 so that

FIG. 5. The four branches of the functionx(t,k). Asymptoti-
cally all of them converge to the same limitx(`,k) shown by
dashed line.
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x (1)~ t !5
k2

4
@cos~k2t/2!J0~k2t/2!1sin~k2t/2!J1~k2t/2!#,

~41!

x (2)~ t !5
k2

4
@sin~k2t/2!J0~k2t/2!2cos~k2t/2!J1~k2t/2!#.

The symbolJn(x) stands for the Bessel function. For sma
timesk2t!1 we find

x (1)~ t !'
k2

4 S 12
k4

16
t2D , x (2)~ t !'

k4

16
t, ~42!

while

x (1)~ t !5x (2)~ t !'
k

4
A 2

pt
→0 ~43!

if the time is large. In the most interesting casek@1 simpli-
fication is achieved by averaging the fast varying factors
the integrals overz in Eqs. ~36!, ~37!. This gives r (k)
'(A221)k2/4A2 which is in good agreement with numer
cal data though somewhat differs from the valuek2/12 given
in Ref. @12#. At last, x`(k)'3k2/16A2 in this limit. One
sees that theq54 resonance admits of very detailed analy
cal description.

Near the resonance calculation of the lowest correc
Q(0) gives

F25I ;

F152
k

2
v8$n1n1A2~n1

21n3
2!@ws1~12n3w!l#%•s,

~44!

F05kwn•s1
k2

2
~v8!2F1

6
n1

21~n1
21n3

2!2~12n3w!G
@compare with Eq.~24!#. Computation of the next correctio
Q(1), though making no principle problems, turns out to
rather tedious and leads to quite cumbersome express
The most important contribution comes from the correct
to the matrixF2

dF2~u!52
1

4
~12n1

2!~v8!4S wf11
1

6
f2D •s ~45!

with the vectorsf1,2 given by

f15@n1~325n1
2!~12n1

2!,112n1
225n1

4 ,112n1
225n1

4!],

f25@n1n3~14215n1
2!,2n1n3~4115n1

2!,2~417n1
2

230n1
4!#.

We drop here corrections to other matricesF whose influ-
ence is negligibly weak. In Fig. 6 the evolution generated
the quasi-Hamiltonian~solid line! is compared to the simu
lation of the exact QKR quantum map which is shown
points. The detuning is chosen to be about 1/2 of its criti
value after which the regime of regular motion breaks in
diffusion. The energyE(t) scales with the first power of th
detuningk in this case. It is due to the form of the zero-ord
n

n

ns.
n

y

l

r

resonant interaction which contains spin and has no class
limit. The theory nicely reproduces all details of the evol
tion up to very large times.

The width of the resonance is now much narrower than
the case of the boundary resonances. Indeed,u derivatives of
the functionsw(v) and n(v) appear in higher corrections
which are large ifk@1. Validity of the expansion deterio
rates because of such contributions. One can roughly e
mate the width suggesting that the influence of the sec
order correction should be relatively weak inside the re
nant domain. This givesDk}k22 which agrees with our
numerical data. Outside this interval the expansion trans
ently diverges. Contrary to the boundary resonances, the
gion of regular motion vanishes in the classical limitk→`
even if the conditionKe5kk5const holds.

To explore the regularity domain and adjacent area
more detail, we have fitted in Fig. 7~a! exact numerical data
for the mean heightEpl of the plateau as a function of th
detuningk. Two qualitatively different regions are clearl
seen: the regularity domain (k<1024), where the plateau is
inversely proportional to the detuning, and the quant
chaos area (k>1023) where the height is scattered aroun
the generic valuel 2;k4. In the intermediate domain th
higher corrections become increasingly important and
perturbation expansion fails. In Fig. 7~b! similar numerical
results are displayed for the caseq53.

At the resonance pointq53 the wave function is natu
rally split into three independent parts.c(u)5c1(u)
1c2(u)1c3(u), each itemcm(u)5(s52`

` C3s1mexp@i(3s
1m)u# being an eigenfunction of the rotation operatorUr

5exp@2(2pi/3)m̂2#. Arranging the items in the form of a
three-component spinor@compare with Eq.~14!#

C~u!5S c1~u!

c2~u!

c3~u!,
D ~46!

the rotation matrix acquires the form~we set againp51)

FIG. 6. The kinetic energyE versus the kick numbert for q
54. The solid line shows the second order perturbation theory
the points correspond to the exact QKR map~each fourth kick is
kept in the main part and each 500th in the inset!. Deviations of the
theory from the exact map is indicated at the bottom.
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Ur5S b* 0 0

0 b* 0

0 0 1
D

5expH 2
2p i

3 S 1 0 0

0 1 0

0 0 0
D J ⇒expS 2

2p i

3

1

A3
l8D .

~47!

On the last step we dropped a trivial phase factor. The d
onal matrixl8 is one of the standard generators of the gro
SU(3) andb5exp(2pi/3)521/21 iA3/2. Now, since the
factor e6 iu changes the indexm by 61, we have in such a
representation

e6 iu⇒e6 iul6 , l15l2
† 5S 0 0 1

1 0 0

0 1 0
D , l1l25I .

~48!

The matrixl1 shifts each element in the column~46! by one
position down and puts the lowest component on the v
top when the matrixl2 is the reciprocal transformation
Both the matrices are traceless. Therefore, the kick oper
gets the form

Uk5expF2 i
k

2
~eiul11e2 iul2!G

5expH 2
i

2
@v~l11l2!2 iv8~l12l2!#J . ~49!

In terms of the standard SU~3! generators the matrixl1

reads

l15
1

2
~l11l41l6!2

i

2
~l22l51l7!. ~50!

The commuting matricesl6 are simultaneously diagona
ized,

l1
(diag)5S b 0 0

0 b* 0

0 0 1
D , l2

(diag)5S b* 0 0

0 b 0

0 0 1
D ,

~51!

with the unitary transformation

Fk5
1

A3 S b* b 1

b b* 1

1 1 1
D . ~52!

Correspondingly, the diagonal form of the kick is

Uk
(diag)5diag~e2 iv1,e2 iv2,e2 iv0!,

~53!
v65k cos~u62p/3!, v05v5k cosu.

Obviously,v11v21v050.
g-
p

y

or

The resonant Floquet operator is now represented as

U1,3
(res)5FkŨ1,3

(res)Fk
† , ~54!

where

Ũ1,3
(res)5Fk

†UrFkUk
(diag)5b* @ I 2~12b!I•IT#Uk

(diag)

~55!

with the one-column matrixI being equal to

I5
1

A3 S 1

1

1
D . ~56!

Due to the factorized form~55! of the matrixŨ1,3
(res), it can be

easily diagonalized. The eigenvectors prove to be equal

f̃(m)5~12b!F(
n

1

ue2 ivn2umu2
G21/2 Uk

(diag)

Uk
(diag)2um

I ,

~57!

m,n51,2,0

while the eigenvaluesum5e2 i ẽm(u) satisfy the cubic equation

FIG. 7. ~a! The plateau heightEpl versus detuningk near the
resonanceq54. ~b! The plateau heightEpl versus detuningk near
the resonanceq53. The solid lines correspond to the theoretic
relationEpl}1/k.
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12~12b!IT
Uk

(diag)

Uk
(diag)2u

I512
12b

3 (
m

e2 ivm

e2 ivm2u
50.

~58!

After this equation has been solved, the resonant Floq
transformation is represented as

U1,3
(res)5exp~2 iFẽF†!5exp@2 iw~u!n~u!•l#,

~59!

ẽ5diag~ ẽ1 ,ẽ2 ,ẽ0!

in terms of the unitary matrixF5FkF̃ where the tilded
matrix

F̃5~f̃(1),f̃(2),f̃(0)! ~60!

consists of the eigenvectors~57!. On the last stage we ex
pressed the 333 Hermitian matrix in the exponent in Eq
~59! in terms of the SU~3! generatorsla . The coefficients
are given by

wna5
1

2
tr@laFẽF†#; a51,2, . . . ,8. ~61!

The vectorn is a unit vector in the eight-dimensional adjoi
space. The transformations described give complete solu
of the problem forq53 resonance. However, the final e
pressions in terms of the roots of the cubic equation~58! turn
out to be too cumbersome and we do not cite them here
the similar way, analytical solution can be found also for t
resonanceq58 which is linked to the SU~4! group. How-
ever, algebraic problems increase very rapidly withq.

Qualitatively, the situation near the lowest resonan
does not essentially differ from that near the resonanceq54.
Figures 8~a!, 8~b! demonstrate the transition from the regu
motion to diffusion near the resonancesq53 andq54. In
both cases the resonant growth is seen at the first st
which then changes by a sharp turnover. Further evolu
crucially depends on the detuning. If it is below some critic
value, the asymptotic plateau begins immediately after
turnover. However, above this value the plateau is prece
by the stage of diffusion. It is clearly seen that the slope
the latter stage (k•E}t) is twice as small as that at th
resonant stage (k•E}t2).

V. GENERAL CASE

A. Floquet operator for a resonance of arbitrary order

The consideration presented above can be easily exte
to a resonance of an arbitrary orderq. The wave function is
expressed in the form of aq-component complex vector

CT~u!5@c1~u!c2~u!•••cq~u!#. ~62!

The component

cm5 (
s52`

`

Csq1mexp@ i ~sq1m!u#, m51,2,3, . . . ,q

~63!
et

on

In
e

s

ge,
n
l
e

ed
t

ed

is an eigenfunction of the operator Ur
(p51)

[exp(22pim̂2/q), which belongs to the eigenvalu
exp@(22pi/q)mod(m2,q)#. Therefore, the rotation for the
resonance (p,q) is implemented by the diagonal matrix

Ur~p,q!5expS 2
2p ip

q
l0D , ~64!

where all matrix elements of the diagonal matrixl0 are in-
tegers from the interval@1,q#. The kick operator looks as in
Eq. ~49! where now

l15l2
† 5S 0T 1

I 0D ~65!

and0 is the (q21)-dimensional zero column vector whenI
is the unit matrix of the same dimension. Both these matri
are traceless and their properties are similar to those in
caseq53 described above. In particular, they are simul
neously diagonalized with the matrix

~Fk
(m)!n5

1

Aq
~b* !mn5

1

Aq
expS 2

2p i

q
mn D . ~66!

of eigenvectors which are the discrete plane waves insid
sample of the lengthq in the angular momentum spac

FIG. 8. The crossover region near the resonancesq53 andq
54. The upper curves correspond tok outside the resonanc
widths. The diffusion is clearly seen after a short initial reson
stage while at smaller values of the detuning the diffusion does
develop. Double log scale is chosen to show all stages of the
evolution.
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These waves satisfy the periodic boundary conditions at
ends of the sample. The diagonal representation of the
operator is a natural extension of Eq.~53!

Uk
(diag)5diag~e2 iv1,e2 iv2, . . . ,e2 ivq!,

~67!

vm5k cosS u1
2p

q
m D , (

m
vm50.

Thus, matrix elements of the kick operator are given by
finite sums

~Uk!mn5
1

q (
%51

q

e2(2p i /q)(m2n)%e2 iv% ~68!

while the resonant Floquet matrix reads

~Up,q
(res)!mn5e2(2p ip/q)mod(m2,q)~Uk!mn . ~69!

Additional phases in Eq.~69!, which become quasirandom
when the integersp andq are large enough, spoil the unifo
mity along the sample and disrupt the plane waves~66!. This
results in localization of eigenvectors of the resonant Floq
matrix @15,5,16#. On the other hand, the rotation operator
converted with the reciprocal transformation into the mat

gm2m85 (
n51

q

~Fk
(n)!m8

* e2(2p ip/q)n2
~Fk

(n)!m

5
1

q (
n51

q

e2(2p ip/q)n2
e2(2p i /q)n(m2m8). ~70!

Equations~67!, ~70! bridges our representation to that us
in Ref. @12#.

However, the both representations yet considered do
permit extending to the case of a finite detuning from
resonance. To make this possible, we have at first to re
sent the resonant Floquet operator in the from of an un
SU(q) transformation@compare with Eq.~59!#,

Up,q
(res)5e2(2p ip/q)l0expF2 i

k

2
~eiul11e2 iul2!G

5e2(2p ip/q)l0exp@2 i ~vlR1v8l I !#

⇒exp~2 iFẽF†!

5exp~2 iwn•l![exp~2 i H̃(res)!, ~71!

where

lR5
1

2
~l11l2!, l I5

1

2i
~l12l2! ~72!

when the matricesla ;a51,2, . . . ,q221 are the standard
generators of the fundamental q-dimensional representa
of the group SU(q). As before, the irrelevant phase fact
generated by the trace trl0 is omitted in final expression
This implies the condition trẽ5(mẽm50.

Diagonalization of the matrix~69! cannot be carried ou
analytically if the dimensionq of the fundamental represen
e
ck

e

et

ot
e
e-
d

on

tation exceeds 4. Nevertheless, some generic conclusions
be drawn from Eq.~71! even without explicitly knowing the
functionsw(u) andn(u). The diagonal eigenvalue~quasien-
ergy! matrix ẽ is connected to the them as

ẽ5w~n•F†lF!, ~73!

whereF is the unitary matrix

F5~f(1), f(2), . . . ,f(q)! ~74!

of the normalized eigenvectors of the resonant Floquet
erator. Matrix elements of theq221 matricesF†laF form
in (q221)-dimensional adjoint spaceq2 vectorsY(m,n) with
the components

f(m)†
laf(n)[A2Ya

(m,n) . ~75!

The diagonal part of Eq.~73! reads in these terms

ẽm5A2w~n•Y(m)!, Y(m)[Y(m,m), ~76!

whereas the off-diagonal part yields the orthogonality con
tion

n•Y(m,n)50; mÞn. ~77!

Because of hermiticity of the generatorsla , all q vectors
Y(m) are real. For the same reason the remaining vectors
mÞn make upq(q21)/2 mutually complex conjugate pair
Y(m,n), Y(n,m)5Y(m,n)* . Using the known property

(
a

~la!rs~la!ty52S drydst2
1

q
drydstD ~78!

of generators of the SU(q) group, we easily find for scala
products of the vectorsY

Y(m,n)* •Y(m8,n8)5S dmm8dnn82
1

q
dmndm8n8D . ~79!

In particular, any given vectorY(m,n) with mÞn is orthogo-
nal to all others including the vectorsY(m). Therefore, the se
$Y(m,n); mÞn% constitutes an orthonormalized basis in t
q(q21)-dimensional subspace of the adjoint space. As
the vectorsY(m) which lie in the complementary orthogona
(q21)- dimensional subspace, they are neither orthogon

Y(m)
•Y(m8)5S dmm82

1

qD ~80!

@see Eq.~79!#, nor linearly independent because of relatio

(
m

Y(m)5tr l50. ~81!

Excluding, with the help of this relation, one of the vecto
we can use the rest of them to construct an orthonormal
basis in the complementary subspace as well. In fact,
overfullness mentioned becomes insignificant in the limit
largeq.

On the other hand, it follows from Eq.~73! that
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wn5
1

2
tr~ ẽF†lF!5

1

A2
(
m

ẽmY(m). ~82!

Using also Eq.~80! together with the fact that(mẽm50 we
obtain finally

w5
1

A2
S (

m
ẽm

2 D 1/2

; n5
1

A2w
(
m

ẽmY(m). ~83!

Note that the vector n entirely belongs to the
(q21)-dimensional subspace spanned by the vectorsY(m).

B. Resonant evolution

In general case we have similar to Eq.~19!

DM~ t !5ei H̃(res)t@M,e2 i H̃(res)t#2

52FS dẽ

du
t1 iei ẽtFF†

dF

du
,e2 i ẽtG

2
D F†

5DM ~ t !•l[@M (0)t1M (1)~ t !#•l. ~84!

The equation obtained is nothing but the matrix form of t
result of the paper@12#.

One can advance as follows. First of all we find from th
equation

M (0)52
1

2
trS dẽ

du
F†lF D 52

1

A2
(
m

ẽm8 Y(m) ~85!

and

M (1)~ t !52
i

2
trS ei ẽtFF†

dF

du
,e2 i ẽtG

2

F†l(m)F D
52

i

A2
(
m,n

@ei ( ẽm2 ẽn)t21#S f(m)* •
df(n)

du DY(m,n)* .

~86!

Terms withm5n drop out the latter sum. Therefore, the tw
vectorsM (0) and M (1) lie in the mutually orthogonal sub
spaces. The vectorM (1)(t) is a quasiperiodic function o
time for any fixed value of the angleu. On the other hand
direct calculation gives at the momentt51

DM~1!5Uk
†@M,Uk#252v8lR1vl I[u~v,v8!•l.

~87!

Here we took into account that the free rotation opera
Ur

(res) commutes with the angular momentumM and that the
kick operator readsUk5exp@2i(vlR1v8lI)# @see Eq.~71!#.
Components of the real vectoru(v,v8) are easily calculated
as

ua5
1

2
v tr~lal I !2

1

2
v8tr~lalR!. ~88!

Comparison with Eqs.~84!–~86! taken at the same momen
t51 gives
r

ẽm8 52A2u•Y(m), i S f(m)* •
df(n)

du D52A2
u•Y(m,n)

ei ( ẽm2 ẽn)21
,

~89!

so we come to

M (0)5(
m

~u•Y(m)!Y(m) ~90!

and

M (1)~ t !5 (
mÞn

12ei ( ẽm2 ẽn)t

12ei ( ẽm2 ẽn)
~u•Y(m,n)!Y(m,n)* ~91!

instead of Eqs.~85! and~86!. All derivatives disappear from
these expressions.

There exists another representation of the evolution wh
is more suitable for our further purpose. It comes from t
connection

DM~ t !52E
0

t

dtei H̃(res)tS d

du
H̃(res)De2 i H̃(res)t

52w8~n•l!t2wn8TE
0

t

dte2 i L̃(res)tl.

~92!

Here

L̃(res)5wn•L ~93!

and the matrix relation

exp~ iwn•lt!~a•l!exp~2 iwn•lt!5aTexp~2 iwn•Lt!l,

~94!

wherea is a (q221)-dimensional vector, has been used. T
matricesLa whose matrix elements look as

~La!bc522i f abc , ~95!

with the quantitiesf abc being the structure constants o
SU(q) group, are generators of the adjoint representation
the group. From dynamical point of view, the interrelation
the operatorsH̃(res)5w(n•l) andL̃(res)5w(n•L) is that be-
tween Hamilton and Liouville operators.

Now, let the vectorx(a) be the eigenvector which belong
to the eigenvaluel̃ a of the Liouville matrix L̃(res). In accor-
dance with the meaning of the adjoint representation,
vector obeys the condition

@n•l,x(a)
•l#25 l̃ ax(a)

•l. ~96!

As one can easily convince oneself by direct substitution,
vectorsY(m,n) satisfy the equation of the form~96! with the
eigenvaluesẽn2 ẽm . This elucidates the meaning of the ve
tors Y as the eigenmodes of the Liouville operator. It
convenient to re-numberq(q21)/2 solutions withm.n
with the help of the superscripta5b51,2, . . . ,q(q21)/2
so that

Y(m,n)⇒x(b); ẽn2 ẽm⇒ l̃ b . ~97!
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Then for the solutions withn.m

x(2b)5x(b)* ; l̃ 2b52 l̃ b . ~98!

There also existq21 real eigenvectorsx(a); a51,2, . . . ,
q21 with zero eigenvaluesl̃ a50. All thesezero modesare
pairwize orthogonal linear superpositions of the vect
Y(m). Obviously, one of them is just the vectorx(1)5n de-
fined in Eq.~83!.

Again, we can separate in Eq.~92! the linearly growing
and quasiperiodic contributions and then exclude the der
tives w8 and n8 by comparing the result with Eq.~87!. In
such a way we arrive at

M (0)5(
a

~u•x(a)!x(a), ~99!

M (1)~ t !5(
b

12e2 i l bt

12e2 i l b
~u•x(b)!x(b)* . ~100!

The result~100! is identical to Eq.~91!. As to Eqs.~90! and
~99!, they express the vectorM (0) in terms of different sets
of vectors which are linear combinations of each other a
belong to the same set of the degenerate zero eigenva
Thus we come to the conclusion that the resonant gro
entirely originates from the zero Liouville modes while th
nonzero ones yield quasiperiodic evolution.

Kinetic energy at the momentt is equal to

E~ t !5
1

2 (
a,b

^DMa~ t !DMb~ t !&C0
†lalbC0

5
1

2 (
a

ha^@DMa~ t !#2&. ~101!

The symbol̂ •••& stands for theu averaging. As before, the
initial stateC0 is chosen to be isotropic,C0

†5(0,0, . . . ,1),
so thatC0

†lalbC05dabha with

ha50 if a<~q21!221, ha51 if ~q21!2<a<q222,

hq22152~121/q!. ~102!

The first set of indices enumerates such matricesla which
include the SU(q21) generators. Such matrices annul t
initial stateC0. The second set marks 2q21 nondiagonal
l-matrices with nonzero elements in theqth columns and
rows. The matrixlq is the last diagonal generator of th
group SU(q). So, only those modesx(a) are significant
which have appreciable projections onto t
(2q21)-dimensionalactivesubspace indicated above.

According to Eq.~101!, the energy resonant growth rate
is given by

r ~p,q;k!5
1

2 (
a

ha^@Ma
(0)#2&. ~103!

Contribution of the nonzero modes fluctuates with tim
and approaches asymptotically a finite positive value
s

a-

d
es.
th

x`~p,q;k!5 lim
t→`

1

2 (
a

ha^@Ma
(1)~ t !#2&. ~104!

Estimation of the interference terms is less certain. If
stationary pointsdlb /du50 are not degenerate, terms}At
arise together with the linearly growing ones.

C. Vicinity of a resonance

Motion near the point of a resonance of the orderq is
described by the quasi-Hamiltonian

H5kH̃(res)1k2Q~k!

5kH̃(res)1k2Q(0)1k3Q(1)1•••

5F0~u!1
1

2
$J,F1~u!%11

1

2
JF2~u!J1•••, ~105!

where

J5I ^ J, Fj~u!5F j~u!1Fj~u!•l. ~106!

The operatorsFj are found from the matrix analogs of th
conditions ~9!,~10!. For the first correction Eq.~9! gives
F2(u)5I while

E
0

1

dtF1~u;2t!52E
0

1

dtDJ~2t!, ~107!

E
0

1

dtF0~u;2t!52E
0

1

dt„@DJ~2t!#2

1$DJ~2t!,F1~u;2t!%1…. ~108!

Here

Fj~u;2t!5e2 iH (res)tFj~u!eiH (res)t,
~109!

DJ~2t!5kDM~2t!.

The left-hand side in Eqs.~107!, ~108! are calculated with
the help of the connection~94!,

E
0

1

dtFj~u;2t!5F j~u!1Fj
T~u!E

0

1

dtei L̃(res)t
•l.

~110!

Because of zero modes, a reciprocal to the operatorL̃(res)

does not exists. This prohibits from straightforward integ
tion over t. To avoid the said difficulty, we regularize op
eratorL̃d

(res)5L̃(res)2 idI where infinitesimald must be set to
zero at the very end of calculation. Then the operator

E
0

1

dtei L̃d
(res)t52

12ei L̃d
(res)

i L̃d
(res)

~111!

becomes well defined. Now, in virtue of Eqs.~92!, ~99!, and
~100!
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DJ~2t!5kuT
12ei L̃d

(res)t

12e2 i L̃d
(res)•l. ~112!

Substituting Eqs.~110!, ~111!, and ~112! in the condition
~107!, we finally find

F1~u!5kuT
11 i L̃d

(res)2ei L̃d
(res)

~12ei L̃d
(res)

!~12e2 i L̃d
(res)

!
•l. ~113!

Due to skew symmetry of the Liouville matrix, (L̃(res))T

52L̃(res), the matrixF1(u) is Hermitian as Eq.~105! im-
plies. Other conditions are solved in the similar way. Ho
ever, corresponding expressions are very bulky in gen
case.When the kick parameterk@1 the typical number of
harmonics in operatorsFj (u) is proportional tok, with a
rapidly increasing coefficientj(q). This results in very fast
diminishing of the widths of resonances whenq grows.

In the approximation~105! the quasi-HamiltonianH is
formally equivalent to the Hamiltonian of a quantum partic
with q intrinsic degrees of freedom which moves in a (q2

21) component inhomogeneous ‘‘magnetic’’ field. In
sense, such a motion is a quantum analog of the clas
phase oscillations near a nonlinear resonance.

VI. CONVERGENCY PROBLEM

Consideration presented above shows that in some
main of the detuning from a quantum resonance of a fin
order q evolution of QKR looks similar to a conservativ
motion described by the effective time-independent qu
Hamiltonian with a discrete quasienergy spectrum. A f
lowest terms of the expansion~105! allow us to predict with
great accuracy the evolution for a very long time. More th
that, in the rangeDk of such a domain~the width of the
resonance!, which is determined by the condition that th
influence of higher corrections is week, the accuracy is
proved with each further correction kept. Nevertheless, i
clear that the formal expansion~105! cannot converge. In-
deed, within the width of any strong resonance of a relativ
small order there exist an infinite number of resonances
large orders which give rise to unrestricted resonant ene
growth. Independently of the number of corrections tak
into account, the quasi-Hamiltonian approach fails to rep
duce such a growth which implies continuous spectrum.

Actually, the resonant rater (p,q;k) decreases when th
order q increases and becomes exponentially small ifq no-
ticeably exceeds the typical localization length. In Fig. 9
plot the empirical dependence of the resonant growth rate
the resonance orderq. At eachq the ratiop/q is chosen to be
as close to the ‘‘most irrational’’ number (A521)/2 as pos-
sible. Our data are in agreement with earlier results fr
Refs.@12,18,19#. The solid line shows the fit with the help o
the semiempirical formula

r ~p,q;k!5
2k2

3q
exp~2q/2l ! ~114!

proposed in Ref.@21#.
The qualitative arguments presented in Ref.@20# connect

the exponential suppression of the resonant rate with the
-
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calization and tunneling in the momentum space. The w
function corresponding to an eigenvectorf(m) reads@12#

c (m)~u!5 (
m52`

`

cm
(m)eimu

5 (
n51

q

fn
(m)~u0!ein(u2u0)

1

2p (
s52`

s5`

eisq(u2u0).

~115!

One must distinguish here between the coordinate eigenv
u0 and the argumentu of the coordinate representation. I
the angular momentum representation this equation yie
ucn1sq

(m) u5ufn
(m)(u0)u, so that the angular momentum distr

bution is periodic with the periodq.
On account of the quasirandom phases in the matrix~69!

~see also discussion below this formula! the q-dimensional
eigenvectorsf(m) are, in fact, localized so that the numbel
of their appreciable components is much smaller thanq.
Then overlap of neighboring bumps of an eigenfunctioncm

(m)

is, typically, exponentially weak. This resembles the eige
functions of a particle moving in a periodic chain of potent
wells. The resonant grows of the angular momentum of Q
is similar to the transport through the chain of the parti
which initially was localized in some well. The rater (p,q;k)
is an analog of the mean value of the squared group velo
of such a particle. The latter is proportional to the expon
tially small probability of tunneling between neighborin
wells. This interpretation is in agreement with relation@12#

r ~p,q;k!5
1

2 (
m

^~ẽm8 !2ufq
(m)u2& ~116!

which directly follows from Eq. ~84! and contains the
weighted-mean value of the squared ‘‘group velocities’’ẽm8 .
Returning to the expression~103!, we conclude that in the
caseq@ l the Liouville zero modes with exponential acc
racy lie in a subspace orthogonal to the active one.

The aforecited arguments show that in the case of largq
the resonant growth reveals itself only on a very remote ti
asymptotics owing to the tunneling between localized pa
of the globally delocalized quasienergy eigenfunctions.

FIG. 9. The resonant growth rater (q) versus the resonanc
orderq. At eachq the p/q ratio is chosen to be the closest to th
most irrational number (A(5)21/2.
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particular, if such a resonance hits the domain of a str
one, it happens after the exponentially large time

t r'F A

kr ~p,q;k!G
1/2

}exp~q/4l ! ~117!

when quadratically growing contribution becomes com
rable with the height of the plateauEpl'A/k formed due to
the influence of the strong resonance@see Figs. 7~a!, 7~b!#.
We found it difficult to calculate the coefficientA analyti-
cally but numerical simulations show that under conditi
k@1 it weakly depends on the kick parameterk as well as on
the order of the strong resonance.

Exponential effects of such a kind, which are characte
tic of the tunneling, are well known to be beyond the rea
of perturbation expansion. For this reason they cannot
described in the framework of the quasi-Hamiltoni
method. This approach reproduces only those features o
motion which are determined by the discrete componen
the quasienergy spectrum. In particular, contribution of
non-zero modes much faster attains its asymptotic va
~104!. As a result, for all weak resonances inside the width
a strong one the time dependence of the partM (1)(t) is dic-
tated during exponentially long timest&t r by their strongest
brother.

On the other hand, if the order of the resonance we
interested in is very large,q@ l , and this resonance lies in th
region of typical irrationals being far from all strong res
nances, already a very small detuning suffices for killing
quadratic growth with exponentially small rate. At the sam
time, such a shift does not influence the termM (1)(t) which
reproduces on exponentially large~though finite! time scale
all characteristic features of the ‘‘localized quantum chao
@16#.

The behavior is most complicated and ambivalent in
transient regionq; l . In this case a number of resonanc
with comparable and moderate orders are neighboring
their domains can overlap. The expansion near one of th
forms a plateau which lasts until the quadratic growth in
next resonance of the same strength reveals itself so tha
original expansion fails. However, the expansion near
new resonance cuts off the growth and forms a higher
teau until a next resonance comes to the action. Such a
tern of repeatedly reappearing regimes of resonant gro
has been discovered in Ref.@19#.

VII. SUMMARY

In this paper we propose on the example of the Q
model the concept of the time independent qua
Hamiltonian of a quantum map. The regimes of quant
resonances, which take place under conditionsk5const and
§5T/4p5p/q, play a crucial role in our construction. Th
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motion in the very point of a quantum resonance with t
orderq is, generally, exactly described by a continuous tra
formation from the SU(q) group. The two qualitatively dif-
ferent contributions: growing with time and saturating, in t
evolution of the QKR come respectively from the zero a
nonzero modes of the generator of the SU(q) transformation
in the adjoint representation of the group. A perturbati
expansion exists near the point of a given quantum re
nance, which provides quite a good description of the mot
within some domain—the width of the resonance. Inside
width of a strong resonance the motion is mastered by
resonance. This motion is proved to be similar to that o
quantum particle withq intrinsic degrees of freedom along
circle in an inhomogeneous (q221) component ‘‘magnetic’’
field.

The width of a quantum resonance strongly depends on
order q. The resonances with smallest orders are the str
gest ones and have maximal widths. The motion within
width of such a resonance, being dominated by it, is pro
to be regular. In all cases save the two boundary resona
q51,2 the regular quantum motion exists in spite of the f
that the corresponding classical motion is chaotic and ex
nentially unstable. The widths of these resonances vanis
the classical limitk→`,T→0,Kc5kT5const. Such a situ-
ation holds as long as the conditionq! l takes place, where
l is the localization length for close typical irrational§, al-
though the widths rapidly diminishe withq. In the opposite
case of very large ordersq@ l and p;q the motion weakly
depends on theq and as well as on the detuningk. The
motions with rational and irrational§ differ only on a very
remote time asymptotics. During a long though finite tim
the motion reveals universal features characteristic for
localized quantum chaos.
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